Categories
Artificial Intelligence Automation Autonomous Agents Business Businesses ChatGPT Enterprise Architecture GPT4o Information Technology IT Engineering Llama Meta OpenAI Technology User Experience

The $1 Trillion Agent Factory: How Generative AI Is Printing Power (Not Just Productivity) – Navigating the Future With Generative AI, Part 5

1. Why AI Agents Are the New Currency of Power

What if your company, or your entire nation, possessed the ability to print productivity by harnessing intelligence at scale?

This concept gained concrete form with the announcement of an unimaginable $500 billion investment in artificial intelligence infrastructure, which excludes the additional €331 billion independently committed by industry titans like Meta, Microsoft, Amazon, xAI, and Apple. This agreement, spearheaded by President Trump, involves a partnership between the CEOs of OpenAI (Sam Altman), SoftBank (Masayoshi Son), and Oracle (Larry Ellison). Their joint venture, named “Stargate”, aims to build “the physical and virtual infrastructure to power the next generation of advancements in AI,” creating “colossal data centers” across the United States, promising to yield over 100,000 jobs.

France and Europe, not to be outdone, responded swiftly. At the AI Action Summit in Paris in February 2025, French President Emmanuel Macron announced a commitment of €109 billion in AI projects for France alone, highlighting a significant moment for European AI ambition. This was followed by European Commission President Ursula Von Der Leyen’s launch of InvestAI, an initiative to mobilize a staggering €200 billion for investment in AI across Europe, including a specific €20 billion fund for “AI gigafactories.” These massive investments, on both sides of the Atlantic, show a clear objective. The highest level of commitment reflects understanding. This fact translates into one reality: being a civilization left behind is simply out of the question.

But the stakes in this global AI game are constantly rising. If the US and Europe thought they were holding strong hands, China, arguably the most mature AI nation, has just raised the pot. China is setting up a national venture capital guidance fund of 1 trillion yuan (approximately €126.7 billion), as announced by the National Development and Reform Commission (NDRC) on March 6, 2025. This fund aims to nurture strategic emerging industries and futuristic technologies, a clear signal that China intends to further solidify its position in the AI race, focusing among others, on boosting its chip industry.

The implicit “call” to the other players is clear: Are you in, or are you out?

Therefore, my first question isn’t issued from a sci-fi movie; it’s not some fantastical tale ripped from the green and black screen of The Matrix, where programs possessed purpose, life, and a face.

This is about proactively avoiding the Kodak moment within our respective industries.

This is about your nation avoiding the declining slope of Ray Dalio’s Big Cycle, where clinging to outdated models in the face of transformative technology is a path toward obsolescence.

raydalio the big cycle

This is the endgame: AI Agents are not just changing today—they are architecting the future of nations.

2. Architecting Sovereignty: How Nations Are Industrializing Intelligence

In November 2024, I had the privilege of delivering a second course on Digital Sovereignty, focused on Artificial Intelligence, at the University of Luxembourg, thanks to Roger Tafotie. I emphasized that the current shift toward advanced AI, especially Generative AI, represents a paradigm shift unlike before. Why? Because, for the first time in history, humanity has gained access to the near-infinite scalability of human-level intelligence. Coupled with the rapid advancements in robotics, this same scalability is now within reach for physical jobs.

05 Architecture of Digital Sovereignty

Digital Sovereignty in the age of AI is a battle for access to the industrialization of productivity. Consider the architecture of AI Digital Sovereignty as a scaffolding built of core capabilities, much like interconnected pillars supporting a grand structure:

  • Cloud Computing: The foundational infrastructure, the bedrock upon which all AI operations rest.
  • AI Foundation Model Training: This is where the raw intelligence is refined, like a rigorous academy shaping the minds of future digital workers.
  • Talent Pools: The irreplaceable human capital, the architects, engineers, data scientists, and strategists who drive innovation. These are the skilled individuals, the master craftspeople, forging the tools and directing the symphony of progress.
  • Chip Manufacturing: The ability to produce advanced CPU, GPU, and specially designed AI chips, like TPU and LPU, guarantees independence.
  • Systems of Funding and Investments: The ability to finance a long-term, consistent, and high-level commitment toward AI capabilities.

If you need a tangible example of how critical resources like rare earth metals and cheap energy are to this race, look no further than President Donald Trump’s negotiations with Volodymyr Zelenskyy. The proposed deal? $500 billion in profits, centered on Ukraine’s rare earth metals and energy reserves. Let’s not forget: 70% of U.S. rare earth imports currently come from China. Control over these resources is the lifeblood of AI infrastructure.

It’s not merely about isolated components but how these elements interconnect and reinforce each other. This interconnectedness is not accidental; it’s the key to true sovereignty – the ability to use AI and control its creation, deployment, and evolution. It’s about building a self-sustaining ecosystem, a virtuous cycle where each element strengthens the others.

Europe initially lagged, but the competition has only just begun. The geopolitical landscape will be a major, unmastered factor.

The current market “game” consists of finding the critical mass between the hundreds of billions invested in R&D, the availability of “synthetic intelligence”, and unlocking a new era of sustainable growth. The race to discover the philosophical stone—to transform matter (transistors and electricity) into gold (mind)— and to achieve AGI and then ASI is on.

Sam Altman knows it; his strategy is “Usain Bolt” speed: the competition cannot keep up if you move at a very fast pace with AI product innovation. Larry Page and Elon Musk intuitively grasped this first. OpenAI was not only created to bring “open artificial intelligence” to each and every human, but also serves as a deliberate counterweight to Google DeepMind. Now, Sundar Pichai feels the urgency to regain leadership in this space, particularly now that Google Search—the golden goose — is threatened by emerging “Deep Search” challengers such as Perplexity, ChatGPT, and Grok.

As of March 2025, HuggingFace, the premier open-source AI model repository, has more than 194,001 text generation models (+24.1% since November 2024) within a total of 1,494,540 AI models (+56.8 % since November 2024). Even though these numbers include different versions of the same base models, think of them as distinct blocks of intelligence. We are already in an era of abundance. Anyone possessing the necessary skills and computational resources can now build intelligent systems from these models. In short, the raw materials for a revolution are available today.

The stage is set: The convergence of human-level intelligence scalability and robotics marks a profound moment in technological history, paving the way for a new era of productivity.

3. The Revolution of the Agentic Enterprise

In October 2024, during the Atlassian Worldwide conference Team 24 in Barcelona, I had the privilege of seeing their integrated “System of Work” firsthand.

Arsène Wenger, former Football Manager of Arsenal FC and current FIFA’s Chief of Global Football development, was invited to share his life experiences in a fireside chat. It was a true blessing from an ultimate expert in team building and the power of consistency.

Arsene Wenger

Mr. Wenger articulated that the conditions and framework for achieving champion-level performances rely on a progressive and incremental journey. While talent can confer a slight edge, that edge remains marginal in the realm of performance. The key differentiator resides in consistent effort, with a resolute commitment to surpassing established thresholds. Regularly implementing extra work and consistently reaching your capacity is what separates a champion from the rest.

Thus, Atlassian pushed their boundaries, unveiling Rovo AI, an agentic platform native to their environment. Rovo is positioned at the core of the “System of Work,” bridging knowledge management with Confluence and workflow mastery with Jira. To my surprise, Atlassian announced they have 500 active Agents! This is a real-world example of printing productivity by deploying purpose-driven digital workers to the existing platform.

But the true brilliance lies in making this digital factory available to their customers. This type of technology should be on every CEO and CIO’s roadmap. How you integrate this capability into your business and technology strategy is the only variable – the fundamental need for it is not.

The Agentic Enterprise is the cornerstone of this change: creating autonomous computer programs (agents) that can handle tasks with a broad range of language-based intelligence.

We’ve transitioned from task-focused programming to goal-driven prompted actions. Programming still has a role to play as it guarantees perfect execution, but the cognitive capabilities of large language reasoning models like GPT O3 and Deepseek R1 lift all its limitations. Moreover, in IT, development is now about generated code. While engineering itself does not necessarily become easier – you still need to care about the algorithm, the data structure, and the sequence of your tasks – the programming part of the process is drastically simplified.

After years of prompt engineering since the GPT3 beta release at the end of 2020, I concluded that prompt engineering is not a job per se but a critical skill.

The Agentic Enterprise is not a distant dream but a present reality, fundamentally changing how organizations construct and scale their work.

4. Klarna’s AI-Powered Customer Service Revolution: How AI Assumes 2/3 of the Workload

In February 2024, the Swedish fintech Klarna announced that their AI contact center agent was handling two-thirds of their customer service chats, performing the equivalent work of 700 full-time human agents. It operates across 23 markets, speaks 35 languages, and provides 24/7 availability.

With full speech and listening capabilities now available in models like Gemini 2 Realtime Multimodal Live API, OpenAI Realtime API, or VAPI, the automation opportunities are virtually limitless.

What made this rapid advancement possible, suddenly?

Technically, the emergence of multimodality in AI models, robust APIs, and the decisive capability of Function Calling form the foundation. But more importantly, this transformation is primarily a business vision; it lies in adopting transformative technology as the main driving power, and using innovation as your key distinguishing factor, just as with Google and OpenAI. When this approach acts as the central nervous system in business strategy, then, the adoption is not perceived as a fundamental disruption but, rather, a gradual and consistent reinforcement.

The crucial capability here is Function Calling, which allows AI models to tap into skills and data beyond their inherent capabilities. Think of getting the current time or converting a price from Euros to Swiss Francs using a live exchange rate – things the model can’t do on its own. In a nutshell, Function Calling lets the AI interact directly with APIs. It’s like giving the AI a set of specialized tools or instantly teaching it new skills.

APIs are the foundation for the intelligence relevance of AI Agents and their ability to use existing and new features based on user intent. In contrast to prior generations of chatbots, which needed explicit intent definitions for each conversation flow, LLMs now provide the intelligence and the knowledge “out of the box.”. To further understand the fundamental importance of APIs for any modern business, I invite you to read my article or listen to my podcast episode titled “Why APIs are fundamental to your business“.

This has led to the rise of startups like Bland.ai that offer products like Call Agent as a service. You can programmatically automate an agent to respond over the phone, even customizing its voice and conversation style – effectively creating your own C3PO.

ElevenLabs, the AI voice company that I use for my podcast, has also launched a digital factory for voice-enabled agents.

Then, December 18 2024, OpenAI introduced Parloa, a dedicated Call Center Agent Factory. This platform represents the first of its kind, specializing in digital workers for a specific industry vertical.

Parloa

The promise? To transform every call center officer into an AI Agent Team Leader. As a “Chief of AI Staff”, your objective will be to manage your agents efficiently, handling the flow of demands, intervening only when necessary, and reserving human-to-human interactions for exceptional client experiences or complex issues.

The revolution in customer service is already here, driven by new AI-based call center solutions. This is a sneak peek of the AI-driven future.

5. The Building Blocks: AI Development Platforms

To establish a clear vision for an AI strategy and augment my CTO practice, I meticulously tested several AI technologies. My goal is to validate the technological maturity empirically, assert the productivity gains, and, more importantly, define the optimal AI Engineering stack and workflow. These findings have been documented within my AI Strategy Map, a dynamic instrument of vision. As a result, my day-to-day habits have completely changed and reflect my emergence as a full-time “AI native”. My engineering practice is reborn in the “Age of Augmentation“.

I changed my stack to Cursor for IT development, V0.dev for design prototyping, and ChatGPT o3 for brainstorming and review. The results achieved so far are highly enlightening and transformational.

Thus, engineering teams’ next quantum leap is represented by the arrival of Agentic IDEs, facilitating an agent-assisted development experience. The developer can seamlessly install the IDE, create or import a project, input a prompt describing a feature, and observe a series of iterative loops leading to the complete implementation of the task. The feature implementation is successful in 75% of cases. In the remaining 25%, the developer issues a corrective prompt to secure 100% implementation, indicating a need to supervise such technology when used as an independent digital worker.

Leading today’s innovative Agentic IDE market are:

Then, the landscape of mature AI frameworks gives companies a great array of enterprise-ready solutions. Automated agent technologies, specifically, have emerged as critical tools:

Finally, DEVaaS platforms are completely redefining the approach to IT delivery :

These technologies allow you to build applications from the ground up that are fully operational right from the start, without any additional setup time. Yet, it is not only about developing an application from scratch and then gradually adding features by using prompts as your instruction; it’s also about application hosting. These solutions now offer a complete DevOps and Fullstack experience.

Although they currently yield simple to moderately complex applications, and may not be entirely mature, the technologies are demonstrably improving at rapid paces. It is only a matter of weeks (not months) before seeing full system decomposition and interconnectedness that reaches corporate standards.
This is exactly what the corporate environment has been waiting for.

How will this impact the IT organization? It comes down to these three outcomes:

First, for companies where the IT organization is a strategic differentiator, the internal IT workforce will increase productivity by delegating development tasks directly to internal AI Agents. Sovereign infrastructure is most likely required in heavily regulated or secretive industries.

Second, companies where IT is a primary activity, but not a core organizational driver can outsource the IT development to specialized companies who also make use of Agentic development IDEs or platforms.

Finally, an option for outsourcing includes the reconfiguration of jobs and empowering base knowledge workers – individuals with no official IT background – to IT positions through AI training. This would be the full return of the Citizen Developer vision, previously promised by Low Code/ No Code trends.

Innovation within the AI domain occurs several times per day, thus requiring a proactive mindset to remain updated technically which leads into actionable technology perspectives.

6. The Power of Uni-Teams: The Daily Collaboration Between Man and Machine

What does it feel like to lead your own AI team?

From experience, it make you feels like Jarod, from the TV show “The Pretender“, a true one-man band capable of handling multiple roles.

Think of it this way, you are now capable of:

  • Writing code like a developer
  • Creating comprehensive documentation like a technical writer
  • Offering intricate explanations like an analyst
  • Establishing policy frameworks like a compliance officer
  • Originating engaging content like a content writerData storytelling like a data analyst
  • Data storytelling like a data analyst
  • Building stunning presentations like a graphic designer

From my experience, reaching mastery in any discipline often reveals an observable truth within the corporate world: a significant portion of our tasks are inherently repetitive. The added value is not in running through the same scaffolding process many, many times, if you are no longer learning (except perhaps to reinforce previous knowledge). The real value is in the outcome. If I can speed up the process to focus on learning new domain knowledge, multiplying experiences, and spending time with my human colleagues, it is a win-win.

My “Relax Publication Style“, an guided practice for anyone starting in content creation, has evolved into a more productive and enjoyable method – combining iterative feedback cycles from human/AI, to leverage strategic insights via structured ideas, ongoing AI-reviews, personal updates and enriched content using human-curation combined with in-depth AI search tools. I will explore this process in a future article.

One of the most surprising shifts in my workflow has been the emergence of “background processing” orchestrated by the AI Agent itself. It’s a newfound ability to reclaim fragments of time, little pockets of productivity that were previously lost. It unfolds something like this:

  1. The Prompt: I issue a clear directive, the starting point for the AI’s work.
  2. The Delegation: I offload the task to the AI, entrusting it to this silent, tireless digital worker.
  3. The Productivity Surge: I’m suddenly free. My capacity is expanded, almost as my productivity is nearly doubled. I can tackle other projects, collaborate with another AI agent, or even (and I’m completely serious) indulge in a bit of gaming.
  4. The Harvest: I gather the results, reaping the rewards of the AI’s efforts. Sometimes, it’s spot-on; other times, a refining prompt is needed.

In my opinion, this is a deep redefinition of “teamwork.” It’s no longer just about human collaboration; it’s about orchestrating a symphony of human and artificial intelligence. This is the definition of “Ubiquity.” I work anytime and truly anywhere – during my commute, in a waiting room, even while strolling through the park (thanks to the marvel of voice-to-text). It’s a constant state of potential productivity, a blurring of the lines between work and, well… everything else.

The next stage begins with gaining awareness and using AI. From there, it progresses to actively building your AI teams. The goals of a collaboration with agents, for instance, for a product designer or a system architect, would be to actually create an AI team so that a human product designer becomes, in fact, the team leader of their AI agents. Let’s see how and why.

The rise of AI teammates promises greater productivity and a fundamental shift in the way we approach problem-solving and work.

ai uni team

7. Evolving as a Knowledge Worker in the Age of AI

How can a worker adapt to the capabilities expansion of printing productivity?

It starts by understanding the current capabilities of AI; exploring them through training or by testing systems, and see how they can be applied in your own workflow. Specifically, with your existing tasks, determine which ones can be delegated to AI. Even though, at the moment, it’s more about a human prompting and the AI executing a small, specific task. Progressively, these tasks will be chained, increasing the complexity to the level of higher hierarchical tasks. This integration of increasingly complex tasks constitutes the purpose of agents – to have a certain set of skills handled by AI.

For functional roles such as product designers or business analysts, there is an opportunity to transition toward a product focus, to understanding customer journeys, psychology, behaviors, needs, and emotions. This can result in an experience (UX) driven approach, where the satisfaction of fulfilling needs and solving problems is paramount while leveraging data insights to enhance the customer’s experience.

Indeed, this technology is already showcasing its potential to bring us together. Within my organization, my colleagues are openly sharing a feeling of relief at how Generative AI empowers them by significantly reducing the workload of some specifically tedious tasks from days to mere minutes. But it is not all about saving time: the key progress that made me really moved, is that now, freed from a few tedious operations, they have now the capacity to explore their current struggles, identify past pain points, and articulate new business requirements. Additionally, it is the “thank you”, that directly acknowledges my teams’ efforts in bringing this new means to reclaim precious time and comfort. What is even far more compelling, and very inspirational from my point of view, is this ability to formulate and then resolve this new set of challenges using the capabilities of this recent AI ecosystem. Witnessing this emerging transformation gives me tangible joy and concrete hope for our collaborative future.

So, the key observation is that it’s up to early adopters and leaders to drive this change. They need to build a culture where people aren’t afraid to reimagine their jobs around AI, to learn how to use these tools effectively, and to keep learning as the technology evolves. The time to strategize how AI reshapes internal processes to master inevitable industry restructuration has arrived while simultaneously positioning your organization as a demonstrative leader for others to follow. To build that next-generation workforce, you need tools and specific actionables strategies; what are the core components to your next plan?

Ultimately, this era of augmentation is a strategic opportunity – one that requires everyone involved, including users and top executives, to actively foster continuous understanding, ongoing discovery, and strategic adaptation, thus contributing at multiple levels to building high-performing teams.

Disrupt Yourself, Now.

8. The Digital Worker Factory: A Practical Example in Banking

Let’s consider a practical example. Imagine delivering a project to create an innovative online platform that sells a new class of dynamic loans—loans with rates that vary based on market conditions and the borrower’s repayment capacity. This platform would be fully online, SaaS-based, and built as a marketplace where individuals can lend and borrow, with a bank acting as a guarantor. That is the start of our story. Now it’s about delivering this product.

What if you only needed a Loan Product Manager, a System Architect, and a team of agents to bring this digital platform to life?

Here’s how the workflow looks.

  1. As the product manager, you specify the feature set and map the customer journey from the borrower’s perspective. You define the various personas – a lender, a borrower, a bank, and even a regulator.
  2. The system architect then set up the technical specifications for the IT applications and LLMs, covering deployment to the cloud, integrations such as APIs, data streams, and more.
  3. You initiate the iterative loop by defining a feature. The AI Agent then plans and generates the code, after which you test the feature. Based on your feedback, the Agent troubleshoots and corrects the program accordingly. This loop continues iteratively until the platform fully takes shape. In this workflow, the product isn’t merely coded—it’s molded. The prompt itself becomes the new code.
agentic team

With a clear vision and the right framework, the path to production is not as complicated as it once was.

The Loan Expert Augmented: AI in Action

Consider the Loan Product Manager. They use AI to simulate loan profitability, examining various customer types and market variations. But, as importantly, they use AI to refine pitches, sales materials, and regulatory documentation. This results in streamlining compliance and ensures alignment with the existing framework.

Generative AI is also used to revise internal and external processes. The templates for product sheets are optimized and iteratively improved. Marketing materials, such as a webpage explaining the product, equally take advantage of Artificial Intelligence to reach the best clarity and impact.

Finally, personalized communication with a customer per specific client also relies upon Generative AI automation and data contextualization. If a customer needs a loan for a car or other tangible asset, the communication is perfectly tailored to the specific context.

This is personal banking at scale.

The focus is on the active role workers play in orchestrating, managing, and continuously evolving the AI systems they rely on in their daily work.

Hence, we’re effectively printing productivity now – a rare paradigm shift. Every professional needs to be proactive to seize this opportunity, not just react to it. Start by exploring AI tools relevant to your field, experiment with their capabilities, and consider how they can be integrated into your daily workflows. Whether you are a software engineer, product designer, or loan expert, the time to adapt is now.

Bear with me: the way you’ve operated up to this point—with data entry in applications, scrupulously following procedures, and writing lengthy reports in document processing software— is now directly challenged by individuals adopting the “automatician” mindset, evolving their skills from basic Excel macros into sophisticated, full-fledged applications. But remember: The future is not something you passively face. This world is your design, using available new technologies along with your pragmatic actions

9. Integrating AI Engineering in your System of Delivery, The Two Paths Forward: New vs Existing Systems

Now that Generative AI has entered your work and that you are integrating all the different aspects of the digital workers – either through pilot projects or all other internal activities – this awareness converges towards one strategic decision.

This decisive decision leads to two clear paths: either build a completely new application and workflow designed from the ground up around AI-augmented technologies or modernize existing complex systems to align with current AI-powered delivery.

Your choice needs solid considerations, even though both outcomes must lean toward a similar goal: a fully modern and flexible digital workforce, printed from your Enterprise Agent Factory. Thus, ensure you keep a strategic direction of impact toward a significantly better system.

Path 1, Building from Scratch: The AI Native Approach

The first and straightforward path involves building completely new systems. Here, the software specifications are essentially the prompts within a prompt flow. Think of this prompt flow as the blueprint for the code, all directly created within an Agentic IT delivery stack. The advantage of this approach is that the entire system is designed from the ground up to work seamlessly with AI agents. It’s like building a house from scratch with an AAA energy pass and all the home automation technologies included.

The prerequisite of this stage is to constitute a core team of pioneers that went successfully into production with at least one product used by internal or external clients. In the process, they successfully earned their battle scars, gained experience, selected their foundation technologies, established architectural patterns, and built a list of dos and don’ts, which ultimately will turn into AI Engineering guidelines and best practices.

Next – and this decisive break from the old system is non-negotiable – this group must devise a brand new method of work: building its strategic and actionable steps in all operational components that allow AI to be present from day one and without the limitation of legacy infrastructure that no longer fits. Because all this experience now results in a unique point of reference, a key ”baseline” from that point you can start designing a process to enable the full transformation from the current to future operations.”

Path 2, Evolving From Within: Growing AI Integration in the Existing Enterprise Application Landscape

The second path involves evolving existing systems. This is a more intricate process as it requires navigating the complexities of the current infrastructure. Engineers accustomed to the predictability and consistency of traditional coding methods now need to adapt to the probabilistic nature of AI-driven processes. They must deal with the fact that AI outputs, while powerful, can not always be exactly the same.

Initially, this can be unsettling because it disrupts your established practices, but with tools such as Cursor or GitHub Copilot, you can quickly become accustomed to this new approach.

This shift requires that software engineers move from the specific syntax of languages like Python or TypeScript to communicate in everyday language with the AI, bringing skills that were previously specific to them into the reach of other knowledge workers. Furthermore, it is not easy to introduce powerful LLMs in a piece of software that has an established code structure, architecture, and history. It’s like renovating an old house – you are forced to work with existing structures while introducing AI elements. This requires a deep understanding of the current code and the implications of architectural choices, such as why you would use Event Streaming instead of Synchronous Communication or a Neo4J (graph database) instead of PostgreSQL (relational database) for a specific task.

Accessing and integrating with legacy systems adds another layer of friction because the code is outdated or uses a proprietary language. While AI facilitates code and data migration, the increased efficiency of AI-native platforms often makes rewriting applications from scratch the most optimal strategy.

In summary, creating AI-native applications from scratch is easier, with an incredible speed of development, but it implies a bold decision. Transitioning an existing application is more difficult, as it has inherent architectural, data, or technological constraints, but it is the most accessible path for many companies.

The increasing power of LLMs to handle ubiquitous tasks that were previously exclusively human tasks implies a compression of tasks and skills within an AI. This shift moves some work regarding coordination, data management, and explanatory work from humans to machines. For human professionals, this will result in the reduction of these types of tasks, freeing them to focus on higher-level tasks.

The duality of paths ahead is a call for a pragmatic approach to transition; it’s about moving forward without disrupting too much of the familiar workplace.

10. The Metamorphosis: From Data Factories to Digital Workforce Factories

[Picture: A symbolic image representing a butterfly emerging from a chrysalis]

Today, we are gradually fully exploiting the potential of Generative AI, with text being the medium to translate, think, plan, and create. These capabilities are expanding to media of all kinds – audio, music, 3D models, and video. Consider what Kling AI, RunwayML, Hailuo, and OpenAI Sora are capable of; it is just the beginning and building blocks of what is possible.

These capabilities, originally for individual tasks, are now transforming entire industries – architecture, finance, health care, construction, and even space exploration, to name just a few.

If you can automate aspects of your life, you can automate parts of your work. You can now dictate entire workflows, methods, and habits. You can delegate. What’s the next stage?

So far, we have created automatons, programs designed to execute predefined tasks to fulfill a part of a value chain. These are digital factories comparable to factories in the physical world that have built computers, cars, and robots. And now, if you combine factories and robotics with software AI, the result is the ultimate idea: the digital worker.

The key is that it is no longer just about using or building existing programs but more about building specific agents. These agents represent specialized versions of the human worker and include roles such as software engineers, content creators, industrial designers, customer service providers, and sales managers. Digital workers have no limits in scaling their actions to multiple clients and languages at the same time.

The new paradigm consists of creating a new workforce. We used to construct data factories with IT systems, and now, with Generative AI, we are building Digital Workforce Factories. A Foundation Model is the digital worker’s brain. Prompts are defining their job function within the enterprise. API and Streams are their nervous system and limbs to act upon the real world and use existing code from legacy systems.

The extensive time once required to cultivate skilled human expertise—spanning roughly eighteen years in formal education, followed by years of specialization, and reinforced through real, tangible work applications— is now radically compressed due to the capacity of LLM technology. By which, as I detailed previously in “Navigating the Future with Generative AI: Part 1, Digital Augmentation“, it all highlights our mastery in having compressed centuries of structured knowledge: from methodical research, systematic problem-solving frameworks, and many and countless cycles of innovation process from implementation best practices. Still, key expertise now resides in both the method and application. New competencies should prioritize AI foundational model mastery, the value of highly skilled fine-tuning methods for specific domain applications, and how to leverage creative prompts to build a tangible output from such systems even with unexpected new scenarios.

It is paramount to fully grasp that what we experience now with AI transformation is more than just a set of groundbreaking techniques. It reveals a new structure—for better and for worse—impacting both knowledge workers assisted by AI agents and manual workers augmented by robotics. But remember, ‘and’ is more powerful than ‘or’: it is precisely the combination and convergence of these roles — human and digital working together — that creates true scalability and transformative potential.

The real path forward isn’t merely augmentation—it’s about fostering a genuinely hybrid model, emerging naturally from a chrysalis stage into a mature form. This new human capability is seamlessly amplified by digital extensions and built upon robust foundations, meticulously refined over time. Moreover, humans are destined to master Contextual Computing, where intuitive interactions with a smart environment—through voice, gesture, and even beyond—become second nature. This isn’t about replacing humans; it’s about elevating them to orchestrate a richer, more integrated digital reality.

Perhaps artificial intelligence is the philosopher’s stone—the alchemist’s ultimate ambition—transmuting the lead of raw data into the gold of actionable intelligence, shaping our environment, one prompt at a time.

Dear fearless Doers, the future is yours.


Categories
Artificial Intelligence Information Technology IT Engineering Methodology Project Delivery Requirements Engineering Requirements Management Technology UX

Mastering Requirement Engineering: How to Steer Any Project Toward Predictable Outcomes – Part 1

Project success boils down to one critical element: expressing requirements as the essential ‘foundational brick’ of every digital initiative—a lesson my experience leading as CTO, Chief Architect and IT Chapter Lead has taught me time and again.

Therefore, I will walk you through practical “ins” and “outs” of requirement engineering (all based from lessons learned during my career); by showing concrete and actionable solutions that will work directly when using proper process. And you’ll find that it’s far more dynamic and engaging than you might have been led to imagine.

The Starting Point of Clarity: Shifting Perspectives

The very first stage of any project aimed at establishing or changing a system inevitably involves stakeholders that bring varied perspectives. These stakeholders might arrive equipped with well-defined lists of requirements, or they may simply have a broad notion of what they need.

As seasoned business analyst, enterprise architect, or engineer in requirement engineering, it’s our charge to transform these somewhat misty ideas into concrete operational expectations.

A successful project rests on laying clear, solid building blocks from the start – but what happens when those very building blocks change mid-construction?

Deconstructing the Requirement

A requirement is nothing less than a unit describing the behavior of the system we’re about the construct, or upgrade. And by system, I’m obviously referring to every moving part of the machine here. I mean that is a blend of human input, machine outputs via technology, like the hardware itself, software systems, and sometimes specialized machinery. These factors all will work together to ultimately deliver goods or services to the end user, or consumer.

To describe requirement engineering as a step-by-step activity first we start at an “intake workshop” or initial “intake discussion” which we conduct. I always see that as an interactive interview that requires that stakeholders need be ready. They should be ready in bringing elements on the products or services to be offered. It as all interactions the diverse group who will consume the interaction . In addition to how different process are offered and interface used.

Having stakeholders ready at the door is not by chance; clear expectations early define strong and lasting project success further on.

Two Pillars of Success: Aligning Vision and Action

Business Objectives

From these interactive and in-depth interviews, we usually collect an initial set of business requirements. These encompass high-level organizational objectives — the global perspective from corporate leaders, what that single entity, at a macro level, expects to achieve.

As a concrete example that can also guide your thinking process. A business objective could be in reducing a specific pain by aiming that customer inquiries drop sharply YoY or perhaps aim. It could be also focused at improving service levels by making more efficient exchanges between front line agent and positive 4-star average ratings during 3 consecutive business months.

I am trying to tell you here what the entire business objectives expressed at the corporate level intend to accomplish when significant system refactors go live and are fully online. Remember that very often these type of grand and bold expressions does not precisely detail how results will emerge, I mean, these statements define “the what”— not exactly “the how.”

Individual Stakeholder Needs

Naturally as part of our overall journey we also investigate other pillars. We also cover in deep dives, all needs from all of our direct individual stakeholders. Those, when using this framework, will vary as they reflect individual viewpoints of different stakeholders within that entire new process. These are obviously the real system’s daily participants, and they start directly with the very consumer but also encompass a diverse group of customer representatives. To list even further members, those usually also include product managers, product owners, compliance officials at back- office positions, salespeople, system’s experts and also administrators of key areas.

So in synthesis, this captures requirements at hand when seen from an enterprise, internal, system users. This gives much clarity as how the system will need to behave from any angle possible to move further efficiently. Those stakeholders, these key needs or statements must absolutely initiate with a dedicated role’s identifier. And always, this unique role should clearly specify who performs which objective. Although a specific name, which does not change, could also fulfil the same need, it is recommend practice when using roles: the user might change over specific time and it also provides the benefit of being universal and interchangeable. We typically associate roles to a purpose describing specific mission with the very scope over our proposed enterprise solution.

For example, it reflects how an consumer should really be welcomed, or given needed support. Or exactly how the user receive help to fulfil exactly their goals and this translates practically in action. To describe it, or express in real business use case – or user stories -, we should use keywords of the quality or standard of mustshould, or could; or in an easier more customer oriented or “human readable” tone, the typical statements of want or could according to established principles of practice like the MoSCoW method; with an object that need specific measurable levels of activity, and these could refer typically as timed elements, or even similar dimensions.

These business requirements and user needs represent the yin and yang needed for a robust requirement engineering exercise… that said, how can a single vision encompass different realities without generating chaos?

Going Deeper

Lets get into more details on requirements. You absolutely should be taking specific points, that must always come to your considerations

Requirements fall into multiple forms and shapes with their nuances. There always will be a business requirements. By that I mean statements encompassing the entire purpose and outcome that must result when viewing it at the top- level. Think big picture; This can refer simply to revenue objectives, but also the general and overall improvement measures from new standards of service or level quality. Maybe even, why would need to change your very organization itself in by adding or reducing key employee functions. In short there should aim any time that new risks diminish across the processes with an even greater growth on specific business categories or customer bases.

Then, always, the stakeholder or even more simply stated user needs should always be on the list and it is just stating things from a concrete daily actions and tasks being required from a normal system’s everyday use and daily journey perspective. That means we include the very customer, any internal team like engineers working in service desk, an administrative expert plus relationship executives, a product lead and their team the real IT team covering areas such an compliance or network infrastructure departments. These all have diverse usage patterns with sometimes vastly diverse daily requirements. Now is that time to take advantage from these unique opportunities being offered in a timely process improvement initiative?

Then come the more refined aspects: all the expressions to define in concrete terms how “the system must work”, taking into consideration every angle. Functional statements, as requirement, does not only cover the idealistic perfect “happy situation but it must consider less likely scenarios and “exceptions cases”. All of this done in order of improving the very solution.

Every statement when dealing with functional requirement must systematically bring other additional questions too: functional, but mainly based on current user’s activities. A proper inquiry must target on how needs achieving business results, when looked through different perspectives that translates into real day-to-day steps to complete a goal being stated as core objectives. For instance. If part of a overall user journey, you must translate even complex workflows with concrete statement which translate as practical system behaviors along various user operations.

We need also to dig into another very specific requirement’s families: the less visible aspect, typically associated a system’s framework such compliance standards for performance that express real world hard, strict constraints. Or what we often coin as simply rules defining parameters, including regulatory statements, corporate norms, industry compliance benchmarks, or specific or established operating frameworks.

For example, if specific or even highly strict certification is paramount, for instance ISO norm 2022 or PCI-DSS norm of the international card processing businesses. As one example among many. Those frameworks brings their mandatory strict operating guide. And these will form that bedrock for all further development at all levels— whether a new or evolving application , an improvement to existing processes or system or even novel products, and new ventures, ensuring there exists no discrepancy when considering what must be done. And more, many businesses already have an internal guiding principles whether or not these are formally integrated for instance in a internal enterprise architecture manual. It means we must always check that aspect first. This can impact by default and most usually is defined from the outset but in rare events it also will emerge at a late, more mature phase, during one that intake deep dive, during session of brainstorming when the proper inquiry has commenced.

A business or process specialist and also an Architect usually must collect initial set of systemic assumptions and the single best and efficient practical means of doing that properly, starts asking good and pointed specific pertinent questions.

This layered approach to discovering and mapping the technical requirements ensures no stone will be left unturned. Do you wonder how you can reconcile these vastly different perspectives in practical project execution terms?

Let’s address this important question in next episode.

Categories
Artificial Intelligence ChatGPT GPT3 GPT4 IT Architecture IT Engineering

API Hero 🤖” – The #GPT That Codes the API for You 🙌

APIs are key to scaling your #business within the global ecosystem. Moreover, your API is a fundamental building block for augmenting universally accessible #AI services, like ChatGPT.

Building an #API, however, can be daunting for non-IT individuals and junior engineers, as it involves complex concepts like API schema, selecting libraries, defining endpoints, and implementing authentication, among others.
On the other hand, for an expert backend #engineer, constructing your fiftieth API may feel repetitive.

That’s where “API Hero” comes in, specifically designed to address these challenges.

Consider an API for managing an “#Agile Planning Poker”. Given a list of functions in plain English, such as “Create Planning Poker”, “Add Participants”, “Estimate User Story”, etc., (including AI-suggested ones), the GPT will generate:

  1. The public interface of the API (for engineers, this corresponds to the OpenAPI/Swagger spec).
  2. #Code in the chosen #programming language, with a focus on modularity and GIT-friendly project structure.
  3. Features like API security, configuration management, and log management.
  4. An option to download the complete code package (no more copy-pasting needed 💪).

And there’s more!

Search for “API Hero 🤖| AMASE.io” on #ChatGPT’s GPT store. Give it a try and send your feedback for further improvement.

By the way:

  1. Currently, GPTs are accessible only to ChatGPT Plus users.
  2. If you want to know more about the decisive nature of API for your business, check my article/podcast “Why API are Fundamental to your Business”.

Link to the GPT: https://chat.openai.com/g/g-a5yLRJA1J-api-hero-amase-io

🫡

Categories
Technology Artificial Intelligence Automation Autonomous Agents ChatGPT GPT4 Information Technology IT Architecture IT Engineering Robots Testing

Navigating the Future with Generative AI: Part 2, Prompt Over Code – The New Face of Coding

In this installment of the Generative AI series, we delve into the concept of “Prompt as new Source Code”. The ongoing revolution of generative AI allows one to amplify one’s task productivity by up to 30 times, depending on the nature of the tasks at hand. This transformation allows me to turn my design into code, eliminating almost the need for manual coding. The time spent typing, correcting typos, optimizing algorithms, and searching Stack Overflow to decipher perplexing errors, structuring the code hierarchy, and bypassing class deprecation among other tasks, are now compressed into one. This minimization of effort provides me with recurrent morale boosts, as I achieve significantly more in less time and more frequently; these instances are micro-productivity periods. To put it in perspective, I can simply think about it during the day, and have a series of conversations with my assistant while I commute. My assistant is always available. In addition, I gain focus time.

I don’t need to wait for a team to prove my concept. Furthermore, in my founder role, I have fewer occasions to write extensive requirement documents than I would when outsourcing developments during periods of parallelization. I just need to specify the guidelines once, and the AI works out the rest for me. Leveraging the  AMASE methodology to fine-tune my AI assistant epitomizes the return on investment of my expertise. Similarly, your expertise, paired with AI, becomes a powerful asset, exponentially amplifying the return on your efforts.

Today, information technology engineering is going through a quantum leap. We will explore how structured coding is being replaced by natural language. We refer to this as prompting, which essentially denotes “well-architected and elaborated thoughts”. Prompting, so to speak, is the crystallization of something that aims to minimize the loss of information and cast-out interpretation. In this vein, “What You Read is What You Thought” becomes a tangible reality.

The Unconventional Coding Experience with AI

Although the development cycle typically commences with the design phase, this aspect will not be discussed in this article. Our focus will be directed towards the coding phase instead.

The development cycle with AI is slightly different; it resembles pair programming. Programming typically involves cycles of coding and reviews, where the code is gradually improved with each iteration. An artificial intelligence model becomes your coding partner, able to code 95% of your ideas.

In essence, AI acts as a coach and a typewriter, an expert programmer with production-level knowledge of engineering. The question may arise: “Could the AI replace me completely? What is my added value as a human?”

Forming NanoTeams: Your AI Squad Awaits

My experience leads me to conclude that working with AI is akin to integrating a new teammate. This teammate will follow your instructions exactly, so clarity is essential. If you want feedback or improvements in areas like internal security or design patterns, you must communicate these desires and potentially teach the AI how to execute them.

You will need to learn to command your digital teammate.

Each AI model operates in a distinct yet somewhat similar fashion when it comes to command execution. For instance, leveraging ChatGPT to its fullest potential can be achieved through impersonations, custom instructions, and plugins. On the other hand, Midjourney excels when engaged with a moderate level of descriptiveness and a good understanding of parameter tweaking.

A New Abstraction Layer Above Coding

What exactly is coding? In essence, coding is the act of instructing a machine to perform tasks exactly as directed. The way we’ve built programming languages is to ensure they are idempotent, repeatable, reliable, and predictable. Ultimately, coding is translated into machine language, creating a version that closely resembles human language. This is evident in modern languages like TypeScript, C#, Python, and Kotlin, where instructions or controlling statements are written in plain English, such as “for each”, “while”, “switch”, etc.

With the advent of AI, we can now streamline the stage of translating our requirements into an algorithm, and then into programming code, including structuring what will ultimately be compiled to run the program. Traditionally, we organize files to ensure the code is maintainable by a human. But what if humans no longer needed to interact with the code? What if, with each iteration, AI is the one updating the code? Do we still need to organize the code in an opinionated manner, akin to a book’s table of contents, for maintainability? Or do we merely need the code to be correctly documented for human understanding, enabling engineers to update it without causing any disruptions? Indeed, AI can also fortify the code and certify it using test cases automatically, ensuring the code does not contain regressions and complies with the requirements and expected outcomes.

To expand on this, AI can generate tests, whether they be unit tests, functional tests, or performance tests. It can also create documentation, system design assets, and infrastructure design. Given that it’s all driven by a large language model, we can code the infrastructure and generate code for “Infrastructure as Code“, extending to automated deployment in CI/CD pipelines.

To conclude this paragraph, referring to my first article in the “Generative AI series”, it is apparent that Natural Language Processing is now the new programming language expressed as prompts. The Large Language Model-based generative AI model is the essential piece of software for elaborating, structuring, and completing the input text into code that can be understood both by human engineers and digital engineers.

The New Coding Paradigm

This fresh paradigm shift heralds the advent of a new form of coding—augmented coding. Augmented coding diminishes the necessity of writing code using third and fourth-generation languages, effectively condensing two activities into one.

In this scenario, the engineer seldom intervenes in the code. There may be instances where the AI generates obsolete or buggy code, but these can often be rectified promptly in the subsequent iteration.

We currently operate in an explicit coding environment, where the input code yields the visible result on the output—this is known as Input/Output coding.

The profound shift in mindset now is that the output defines the input code. To elucidate, we first articulate how the system should behave, its structure, and the rules it must adhere to. Essentially, AI has catapulted engineers across an innovation chasm, ushering in the era of Output/Input coding.

Embracing Augmented Coding: A Shift in Engineering Dynamics

The advent of augmented coding ushers in a new workflow, enhancing the synergy between engineers and AI. Below are the core aspects of this transformation:

  1. Idea Expression: The augmented engineer is impelled to express ideas and goals to achieve.
  2. Requirement Listing: The engineer lists the requirements.
  3. Requirement Clarification: Clarify the requirements with AI.
  4. Architecture Decisions: Express the architecture decisions (including technology to use, security compliance, information risk compliance, regulatory technical standards compliance, etc.) independently, and utilize AI to select new ones.
  5. Coding Guidelines: Declare the coding guidelines independently and sometimes consult the AI.
  6. Business Logic: Define the business logic in the form of algorithms to code.
  7. Code Validation: Run the code to validate it works as intended. This becomes the first order of acceptance tests.
  8. Code Review: assess the code to ensure it complies with the engineering guidelines adopted by the company.
  9. Synthetic Data Generation: Use AI to generate data sets that are functionally relevant for a given scenario and a persona.
  10. Mockup-API Generation: Employ AI to generate API stubs that are nearly functionally complete before their full implementation.
  11. Test Scenario Listing: Design the different test scenarios, then consult stakeholders to gather feedback and review their completeness.
  12. Test Case Generation: Make AI to generate the code of test cases. The same technique applies to security tests and performance tests.

AI can even operate in an autonomous mode to perform a part of the acceptance tests, but human intervention is mandatory at certain junctures. It’s crucial to bridge results with expectations.

Hence, when uncertainties arise, increasing the level of testing is prudent, akin to taking accountability upon acceptance tests to ensure the delivered work aligns with the expected level of compliance regarding the requirements.

Non-Negotiable Expectations

In the realm of critical business rules and non-functional requirements such as security, availability, accessibility, and compliance by design, these aspects are often considered second-class citizen features. Now that AI in coding facilitates the choice, these features can simply be activated by including them in your prompts to free you up more time to rigorously test their efficiency.

Certain requirements are tethered to industry rules and standards, indispensable for ensuring individual or collective safety in sectors like healthcare, aviation, automotive, or banking. The aim is not merely to test but to substantiate consistent performance. This underscores the need for a new breed of capabilities: Explainable AI and Verifiable AI. Reproducibility and consistency are imperative. However, in a system that evolves, attaining these might be challenging. Hence, in both traditional coding and a-coding, establishing a compliance control framework is essential to validate the system’s functionality against expected benchmarks.

To ease the process for you and your teams, consider breaking down the work into smaller, manageable chunks to expedite delivery—a practice akin to slicing a cake into easily consumable pieces to avoid indigestion. Herein, the role of an Architect remains crucial.

Yet, I ponder how long it will be before AI starts shouldering a significant portion of the tasks typically handled by an Architect.

Ultimately, the onus is on you to ensure everything is in order. At the end of the day, AI serves as a collaborative teammate, not a replacement.

Is AI Coding the Future of Coding?

The maxim “And is greater than or” resonates well when reflecting on the exponential growth of generative AI models, the burgeoning number of published research papers, and the observed productivity advantages over traditional coding. I discern that augmented coding is destined to be a predominant facet in the future landscape of information technology engineering.

Large Language Models, also known as LLMs, are already heralding a modern rendition of coding. The integration of AI in platforms like Android Studio or GitHub Copilot exemplifies this shift. Coding is now turbocharged, akin to transitioning from a conventional bicycle to an electric-powered one.

However, the realm of generative AI exhibits a limitation when it comes to pure invention. The term ‘invention’ here excludes ideas birthed from novel combinations of existing concepts. I am alluding to the genesis of truly nonexistent notions. It’s in this space that engineers are anticipated to contribute new code, for instance, in crafting new drivers for emerging hardware or devising new programming languages (likely domain-specific languages).

Furthermore, the quality of the generated code is often tethered to the richness of the training dataset. For instance, SwiftUI or Rust coding may encounter challenges owing to the scarcity of material on StackOverflow and the nascent stage of these languages. LLMs could be stymied by the evolution of code, like the introduction of new keywords in a programming language.

Nonetheless, if it can be written, it can be taught, and hence, it can be generated. A remedy to this quandary is to upload the latest changes in a prompt or a file, as exemplified by platforms like claude.ai and GPT Code Interpreter. Voilà, you’ve just upgraded your AI code assistant.

Lastly, the joy of coding—its essence as a form of creative expression—is something that resonates with many. The allure of competitive coding also hints at an exciting facet of the future.

Short-Term Transition: Embracing the Balance of Hybrid A-Coding

The initial step involves exploring and then embracing Generative AI embedded within your Integrated Development Environment (IDE). These tools serve as immediate and obvious accelerators, surpassing the capabilities of features like Intellisense. However, adapting to the proactive code generation while you type, whether it’s function implementation, loops, or SQL code, can hasten both typing and logic formulation.

Before the advent of ChatGPT or GPT-4, I used Tabnine, whose free version was astonishingly effective, adding value to daily coding routines. Now, we have options like GitHub Copilot or StableCode. Google took a clever step by directly embedding the AI model into the Android Studio Editor for Android app development. I invite you to delve into Studio Bot for more details on this integration.

Beware of Caveats During Your Short-Term Transition to Generative AI

Token Limits

Presently, coding with AI comes with limitations due to the number of input/output token generation. A token is essentially a chunk of text—either a whole word or a fragment—that the AI model can understand and analyze. This process, known as tokenization, varies between different AI models.

I view this limitation as temporary. Papers are emerging that push the token count to 1M tokens (see Scaling Transformer to 1M tokens and beyond with RMT). For instance, Claude.ai, by Anthropic, can handle 100k tokens. Fancy generating a full application documentation in one go?

Model Obsolescence

Another concern is the inherent obsolescence of the older data on which these models are trained. For example, OpenAI’s models use data up to 2022, rendering any development post that date unknown to the AI. You can mitigate this limitation by providing recent context or extending the AI model through fine-tuning.

Source Code Structure

Furthermore, Generative AI models do not directly consider folder structures, which are foundational to any coding project.

Imagine, as an engineer, interacting with a chatbot crafted for coding, where natural language could reference any file in your project. You code from a high-level perspective, while the AI handles your GIT commands, manages your gitignore file, and more.

Aider exemplifies this type of Gen AI application, serving as an ergonomic overlay in your development environment. Instead of coding in JavaScript, HTML, and CSS with React components served by a Python API using WebSocket, you simply instruct Aider to create or edit the source code with functional instructions in natural language. It takes care of the rest, considering the multiple structures and the GIT environment. This developer experience is profoundly familiar to engineers. The leverage of a Command Line Interface – or CLI, amplifies your capabilities tenfold.

Intellectual Property Concerns

Lastly, the risk of intellectual property loss and code leakage looms, especially when your code is shared with an “AI Model as a Service”, particularly if the system employs Reinforcement Learning with Human Feedback (RLHF). Companies like OpenAI are transparent about usage and how it serves in enhancing models or crafting custom models (e.g. InstructGPT). Therefore, AI Coding Models should also undergo risk assessments.

The Next Frontier: Codeless AI and the Emergence of Autonomous Agents

Names like GPT Engineer, AutoGPT, BabyAGI, and MetaGPT herald a new branch in augmented coding: the era of auto-coding.

These agents require only a minimal set of requirements and autonomously devise a plan along with a coding strategy to achieve your goal. They emulate human intelligence, either possessing the know-how or seeking necessary information online from official data sources, libraries to import, methods, and so on.

However, unless the task is relatively simple, these agents often falter on complex projects. Despite this, they already show significant promise.

They paint a picture of a future where, for a large part of our existing activities, coding may no longer be a necessity.

Hence, the prompt is the new code

If the code can be generated based on highly specific and clear specifications, then the next logical step is to consider your prompt as your new source code.

It means you can start storing your specifications instructions, expressed as prompt, then store the prompt in GIT.

CD/CC with Adversarial AI Agent
Continuous Development/Continuous Certification (CD/CC) with Adversarial AI Agent

Suddenly, Continuous Integration/Continuous Delivery (CI/CD) becomes Continuous Development/Continuous Certification (CD/CC), where the prompt enables the development of working pieces of software, which will be continuously certified by a testing agent working in adversarial mode: you continuously prove that it works as intended.

The good thing is that benefits stack up: the human specify, the AI code/deploy and the AI certify, to finish with the human using the results of the materialization of its thoughts. Finally, the AI learns along with human usage. We close the loop.

Integrating New Technology into Traditional Operating Models

AI introduces a seamless augmentation, employing the most natural form of communication—natural language, encompassing the most popular languages on Earth. It stands as the first-of-its-kind metamorphic software building block.

However, the operating model with AI isn’t novel. A generative AI model acts as an assistant, akin to a new hire, fitting seamlessly into an existing team. The workflow initiates with a stakeholder providing business requirements, while you, the lead engineer, guide the assistant engineer (i.e. your AI model) to execute the development at a rapid pace.

Alternatively, a suite of AI interactions, with the AI assuming various roles, like dev engineer, ops engineer, functional analyst, etc. can form your team. This interaction model entails externalizing the development service from the IT organization. Here, stakeholders still liaise through you, as lead engineer or architect, but you refine the specifications to the level of a fixed-price project. Once finalized, the development is entirely handed over to an autonomous agent. This scenario aligns with insourcing when the AI model is in-house, or outsourcing if the AI model is sourced as a Service, with the GPT-4 API evolving into a development service from a Third-Party Provider like OpenAI.

AI infuses innovation into a traditional model, offering stellar cost efficiency. Currently, OpenAI’s pricing for GPT-4 stands at $0.06 per 1000 input tokens and $0.12 per 1000 output tokens. Just considering code generation (excluding shifting deadlines, staffing activities, team communication, writing tasks, etc.), for 100,000 lines of code with an average of 100 tokens per line (which is extensive for standard leet code), the cost calculation is straightforward:

100,000 × 100 = 10,000,000 tokens; (10,000,000 tokens × $0.12) ÷ 1000 = $1,200. This cost equates to a mere two days of development at standard rates.

For perspective, Minecraft comprises approximately 600,000 lines of Java code. Theoretically, you could generate a Minecraft-like project for less than $10,000, including the costs of input tokens.

However, this logic is simplistic. In reality, autonomous agents undergo several iterations and corrections before devising a plan and rectifying numerous errors. The quality of your requirements directly impacts the accuracy of the generated code. Hence, mastering the art of precise and unambiguous descriptive writing becomes an indispensable skill in this new realm.

Wrap up

Now, you stand on the precipice of a new coding paradigm where design, algorithms, and prompting become your tools of creation, shaping a future yet to be fully understood…

This transformation sparks profound questions: How will generative AI and autonomous agents reshape the job market? Will educational institutions adapt to this augmented coding era? Is there a risk of losing the depth of engineering expertise we once relied upon?

And as we move forward, we can only wonder when quantum computing will introduce an era of instantaneous production, where words will have the power to change the world in real time.

🖖