Categories
Artificial Intelligence Automation Autonomous Agents Business Deep Learning GPT4o Information Technology Reinforcement Learning Reinforcement Learning Strategy Technology Technology Strategy

Navigating the Future with Generative AI: Part 4, Unstoppable AGI and Superintelligence?

AGI and Superintelligence 1

1. Connecting the Dots Between Two Life-Changing Milestones for Humanity

In a Times Magazine interview, Yann Lecun remarked, “I don’t like to call [it] AGI because human intelligence is not general at all.” This viewpoint challenges our common understanding of Artificial General Intelligence (AGI) versus the supposed limitations of human intelligence. The term “artificial general intelligence” itself seems overused and often misunderstood. While it initially appears intuitive, upon closer examination, nearly everyone with an informed perspective offers a different definition of AGI.

The fog only thickens with Ilya Sutskever, Chief Scientist behind the wildly popular GPT generative AI model. In an MIT Technology Review interview, he states, “They’ll see things more deeply. They’ll see things we don’t see,” followed by, “We’ve seen an example of a very narrow superintelligence in AlphaGo. […] It figured out how to play Go in ways that are different from what humanity collectively had developed over thousands of years. […] It came up with new ideas.”

Before DeepMind’s AlphaGo versus Lee Sedol showdown in 2016, we had IBM’s Deep Blue chess victory against Garry Kasparov in 1997. The unique aspect of these AIs is their mastery within a single, specific domain. They aren’t general, but superintelligent—surpassing human capability—within their respective areas.

In this article within the “Navigating the Future with Generative AI” series, we’ll explore two inevitable stages in humanity’s future: AGI and Superintelligence.

2. Defining AGI: What Do We Really Mean?

Numerous definitions exist for what we call AGI and superintelligence. These terms often intertwine in contemporary discussions around artificial intelligence. However, these are two very distinct concepts.

Firstly, AGI stands for Artificial General Intelligence. This signifies a state of artificial intelligence built upon several building blocks: machine learning, deep learning, reinforcement learning, the latest advancements in Generative AI and Imitation Learning algorithms, and basic code. These all contribute to a level of versatility in task execution and reasoning. This developmental stage of synthetic intelligence mirrors what an average human can achieve autonomously in various areas, demonstrating a generalized capability to perform diverse tasks.

These tasks stem from a foundation of knowledge—akin to schooling—combined with basic learning for completing new, periodically defined objectives to achieve specific goals. These goals exist within a work setting: finalizing an audit ensuring corporate compliance with AI regulations, ultimately advising teams on mitigation strategies. Conversely, they exist in daily life: grocery shopping, meal preparation for the next day, or organizing upcoming tasks. This AGI, working on behalf of a real human, benefits from globally accessible expertise. These attributes enable assistance, augmentation, and ultimately, complementation of everyday actions and professional endeavors. In essence, it acts as a controllable assistant: available on demand and capable of executing both ad-hoc and everyday tasks. The operative word here is general, implying a certain universality in skillsets and the capacity to execute the spectrum of daily tasks.

I share Yann Lecun’s view: a key missing element in current AI models is an understanding of the physical world. Let’s be more precise:

  • An AI requires a representation of physics’ laws but also an operational model determining when these laws apply. A child, after initial stumbles, inherently understands future falls will occur similarly, even without knowledge of the gravitational force field. They can learn, sense, and anticipate the effects of Earth’s gravity. Similarly, our bodies grasp the concept of weight calculation without comprehending its mathematical expression before formal learning.
  • Beyond this world model, an AI needs to superimpose a system of constraints, continuously reaffirming the very notion of reality. For example, we understand that wearing shoes negates the feeling of the hard ground beneath. Our preferred sneakers, due to their soles, elevate us a couple of centimeters, offering a slight cushioning effect while running. We trust the shoes won’t detach, having secured the laces. We vividly recall fastening those blue shoes before beginning our run as usual. Most importantly, we possess the unshakeable belief we won’t sink into the asphalt, knowing it doesn’t share mud’s consistency. Thus, we can confidently traverse our favorite path, striving for personal satisfaction, aiming to break that regional record.
  • An AI needs not only the ability to plan but also the capacity to simulate, adapt, and optimize plans and their execution. Recall your last meticulously planned trip. Coordinates meticulously plotted on your GPS, you set off with time to spare. But alas, the urban data was outdated, missing the detour at the A13 freeway entrance. Then, misfortune struck: an accident reported on the south freeway, traffic condensing from three lanes into one. Stuck in a bottleneck, only two options remain—pushing forward in hope or finding an alternate route. Checking your watch: 23 minutes left to reach your destination. This is how dynamic and complex planning a task can be. And yet, humans are capable of handling this all the time.
  • An AI requires grounding in reliable and idempotent functionalities, echoing the foundation of classical computing: programming, logic, and arithmetic calculation. The ability to call upon an internal library, utilize external APIs, and perform computations is paramount. This forms the basis of real-world grounding, maintaining “truth” as the very infrastructure of AGI. It’s about providing an action space yielding predictable, stable results over time, much like the verified mathematical theorems and laws of physics backed by countless empirical papers. Take, for instance, the capacity to predict a forest drone fleet’s movements using telemetric data, factoring in wind speed and direction, geospatial positioning, the relative locations of each drone and its neighbors, interpreting visual fields, and detecting obstacles (trees, foliage, birds, and so on).
  • An AI have to capitalize on real-time sensory input to infer, deduce, and trigger a decision-action-observation-correction loop akin to humans. For instance, smelling smoke immediately raises an alarm, compelling us to locate the fire source and prevent potential danger. Smartphones, equipped with cameras and microphones, display similar capabilities. Taking this further, devices like Raspberry Pis, when combined with diverse electronic sensory components, can even surpass human sensory capacities. Consider a robot with ultraviolet, infrared, or ultrasonic sensors, allowing it to “sense” things beyond our perception. This lends literal meaning to Ilya Sutskever’s statement.

This implies that AGI won’t necessarily be beneficial or provide significant added value in highly specialized fields, especially in areas where humans have been traditionally adept. This applies to domains like fundamental research, inventiveness, and engineering design – areas I believe will remain constrained by the currently available knowledge pool on the internet. This limitation arises because AGI’s continued advancement is largely driven by companies tailoring it to their specific expertise, often regarded as intellectual property.

Thus, we progressively journey towards AEI: Artificial Expert Intelligence. This translates to a model or agent, a pinnacle expert in its field. Imagine an AEI on par with the top 5% of experts (> 2σ) on this planet, reaching Olympian levels, like AlphaGeometry and AlphaProof, who secured the Silver Medal at the International Mathematical Olympiad.

The architectures with the most potential rely on active collaboration between expert models (Mixture of Experts) and between agents (Mixture of Agents). Even when individual model performance within this collaborative framework isn’t the absolute best, the collaborative outcome exhibits a quality level on par with, if not exceeding, that of the best individual models like GPT4-o. It’s a striking testament that collaboration, be it human or artificial, remains the most effective avenue to reach any objective.

3. Humanity’s Inevitable Ascent Towards Superintelligence

Revisiting the human versus machine narrative, 2018 marked a pivotal encounter: AlphaStar versus TLO (Dario Wunsch), then MaNa (Grzegorz Komincz), two professional gamers from the renowned StarCraft Team Liquid. Created by Google DeepMind, AlphaStar is a digital prodigy trained on the collective experience of 600 agents, equivalent to 200 years of playing StarCraft.

Consider the inherent imbalance when directly contrasting human capabilities against those of AI:

  1. Replication Capacity: AIs can be copied indefinitely.
  2. Relentless Training: AIs train ceaselessly, needing no sleep, nourishment, or breaks.
  3. Absolute Focus: AIs exhibit unwavering concentration on their designated tasks.
  4. Self-improvement through concurrent learning: AIs hone their abilities by training against their evolving intelligence, devising novel strategies to secure victory.
  5. Linear scalability: the more computing and memory resources you add, the greater the performance

The outcome: an AI consistently outmaneuvering the crème de la crème of a strategic open-world video game’s premier league. And as if that weren’t enough, it maintains its position within the Grandmaster league.

Here lies the very essence of an intelligence surpassing human decision-making abilities within a similarly vast and dynamic environment: this is what we classify as Superintelligence, or ASI.

Superintelligence, from my perspective, transcends mere human intelligence and even surpasses collective human intelligence. It indicates that even a group of individuals, regardless of their combined expertise and knowledge, would be outpaced, left trailing by an artificial intelligence capable of going beyond their cumulative potential.

Imagine instead a new form of synergy: a “super” human system collaboratively engaged in highly cognitive functions with this Superintelligence. This involves humans directing or, perhaps more accurately, guiding this Superintelligence based on our needs. While this Superintelligence operates with its own raison d’être, it wouldn’t clash with the fundamental purpose of humanity. This Superintelligence possesses access to those superior functions—understanding the universal model within which humanity exists. It possesses the model of reality itself.

Moreover, it resides within a self-improvement and discovery paradigm, continuously unveiling novel operations, new paradigms, and potentially even new forms of energy. Think entirely new physics laws that govern our universe; laws that humans, as of yet, have not uncovered. This encompasses diverse domains: medicine, engineering, revolutionary material science, new composite development, and engineering breakthroughs for unprecedented construction methods. Envision a symbiotic relationship between humans and machines fulfilling humanity’s ambitions. The limitations posed by individual human existence or the current state of collective human intelligence dissolve; no longer a barrier, it morphs into an expansive vision of human evolution, a potential accelerator for progress.

It even prompts new questions: How far can humans evolve? Or more precisely, how quickly?

However, we shouldn’t discount the possibility that artificial Superintelligence won’t be seen—or won’t see itself—as a novel species.

Therefore, being as rational as possible, we cannot accurately predict if this species would afford humanity the same compassion and civil collaboration that we strive for with our fellow human beings. It’s even plausible that they won’t hold any particular regard, instead pursuing their objectives, much like we think little of stepping on ants while daydreaming in a beautiful landscape, lost in contemplation, our thoughts oscillating between everyday worries and future aspirations.

4. What Would Constitute Human Superintelligence?

Human superintelligence embodies the culmination of all accumulated knowledge, discoveries, experiences, and yes, even the mistakes made by our ancestors to this point. Ultimately, this human superintelligence represents the collective “us” of today. It’s what fuels our intricate logistics and supply chains, our relentless pursuit of natural resources. It underpins our scientific endeavors: from breakthroughs in biology, mathematics, and agriculture, to understanding our global economic system – allowing us to manage our resources effectively, allocate them efficiently, and strategize our reinvestments. Money, in this light, transforms into a socio-economic technology.

Essentially, when comparing human superintelligence—today’s collective human intellect—with artificial superintelligence, a stark contrast emerges in their evolutionary cycles. Artificial intelligence advances at a significantly faster pace, powered by recent breakthroughs in training using our data. This data, importantly, reflects our findings, the mirror to thousands of years of human advancement accessible through the internet. This hints that artificial superintelligence would evolve at a much faster rate than humanity itself.

This rapid advancement stokes anxieties about potential disruption within the job market. Tech titans like Sam Altman advocate for Universal Basic Income (UBI) as a safety net for those displaced by artificial intelligence or robotics, allowing individuals to meet their basic needs even after losing their jobs. At that juncture, work itself detaches from its traditional role: that direct link between labor, contribution to the value chain, recognized worth, and societal standing. Instead, we confront the image of an economic umbilical cord, individuals sustained by the state-funded by fellow citizens.

While I remain undecided on my stance regarding UBI’s necessity, it compels contemplation. When UBI becomes a reality for a significant portion of the population, what function does money truly serve within our society? How do we sustain work motivation beyond “earning a living” when basic needs are met without active contribution? What ripples will be felt throughout a sovereign currency? Will the collective of people continue to control the economy, or is the future in the hands of AI-driven megacorporations?

There are so many answers yet to be uncovered.

After all, maybe “computing” should be considered a universal right. Therefore, we would shift the focus from UBI to UBC, Universal Basic Computing.

5. AGI and Superintelligence: Steering Toward a Future of Abundance or Ruin?

The next cycle hinges on resource accessibility and access to “programming” the world. Initially, artificial intelligence, at the very least, will permeate our daily lives. We are transitioning to personalized AI assistants, specializing in our chosen pursuits, whether robotics for errands, learning assistance for mastering a new language, or perfecting one’s singing voice. Next to none, specialized AI coaches will emerge to achieve elite athletic status, along with AI tutors guiding our artistic development beyond the readily available generated art of today.

Simultaneously, this superintelligence would be managing our complex systems: national infrastructures, electricity grids, vast transportation and logistical networks. Thus, it can drive early warning systems for natural disasters or power next-generation weather prediction platforms that incorporate oceanic currents. It will even account for stellar events such as shifts in the sun’s activity, factoring in our solar system’s dynamic positioning.

In conclusion, these are just glimpses into the potential futures shaped by AGI and superintelligence. However, the core message remains: we stand at a critical juncture. Depending on our collective appetite for progress, we could be headed toward a future of abundance or stumble along the path toward our own undoing.

Science offers an incredible opportunity: the chance to break free from a civilization driven by profit-motivated conflicts and ideological clashes. Instead, it enables collaboration guided by a neutral, third-party entity—one that embodies the best of what we, as a species, have strived for, built, and imagined. This collaboration offers a path for our societal framework to truly evolve.

The future is bright if we make it right.

🫡

Categories
Artificial Intelligence Business Businesses ChatGPT Engineering EU AI Act GPT4 GPT4o Information Technology Innovation Llama Meta OpenAI Regulation Technology

✨ Llama 3.1, Meta and the EU AI Act – Where are the areas of synergy between innovation and regulation?

img 20240727 wa00033116017234937086313
Llama 3.1 AI model

Llama 3.1, a 405 Billion parameters model, has just been released by Meta.

It comes with increased performances. Some early tests make it comparable to “GPT4o“.

A few perks:

  • Still #opensource
  • 128K token context window
  • Improved Multilingual Support. Meta is a leader in multilanguage models.
  • Comes with a new security and safety tool for advanced moderation and control mechanisms to ensure safe interactions.
  • Improved capabilities for creating synthetic data.

I find the partner ecosystem, including NVIDIA, Google Cloud, Microsoft, Groq supporting Llama already quite impressive (see picture).

But also…

While the EU AI Act has been officially published on July 12, 2024, in the EU official journal, to come into force on August 2, 2024, Meta made worrisome news for the #artificialintelligence open source community.

In a nutshell, Meta will withhold the rollout of multimodal AI models in the EU region until the regulatory rules are clarified.

The EU AI Act contains explicit rules for foundation models, also known as “general-purpose AI models”, amongst the following:

  • Article 51: Classification of general-purpose AI models as general-purpose #AI models with systemic risk
  • Article 53: Obligations for providers of general-purpose AI models
  • Article 55: Obligations for providers of general-purpose AI models with systemic risk
  • Article 56: Codes of practice

Let’s hope we will find a way to balance #innovation and #regulation.

🫡

Categories
Technology Artificial Intelligence Business Innovation personal development Questioning Self development Wisdom

The Art of Questioning: How One Well-Crafted Question Can Significantly Improve Your Life (and Everyone Around You)

“There is no dumb question, only dumb answers”

This is what my teacher told me when I was in primary school. This simple yet powerful sentence cancelled my fear of looking stupid when asking questions whenever I felt the need to.

Today, in my leadership position, I regularly ask questions for various reasons. The primary motive is that leading within the realm of excellence requires understanding the situation and bridging it with objectives you must reach. Then, it is about delivering a simple message, built on the why, how and what so that your peers understand the mission and have all the elements to make it happen. Everything happens for a reason, my responsibility lies in exposing the reason, taking decisions, and consequently triggering actions.

The second motive is that I need to understand the depth of systems and I simply LOVE acquiring knowledge. This fuels my motivation. It is like filling an endless toolbox that helps me to invent, build, compose, and innovate. I guess it is the scientist and the engineer parts in me. And I am still curious about life as a 4-year-old kid. All innovation starts with the same question: ‘How do we solve this problem?’ This question launches startups and is the mother of all technological advancements.

The sentence I use the most is « I don’t understand, can you explain, please? ». it is about being aware there are a variety of things to discover, then there are many different points of view, outmatched by ways of thinking. What fascinates me the most is when people share their experiences. I am also conscious that my interlocutor’s sentences and my very own understanding are two sides of the conversation. The point is, that it’s not always smooth communication.

It is about finding the right channel and angle.

It is about finding the right tempo and timing.

In this situation, I use the almighty Question Mark, a weapon created eons ago as powerful as Thoth’s Caduceus.

“I am just a child who has never grown up. I keep asking these ‘how’ and ‘why’ questions. Occasionally, I find an answer “

Stephen Hawking

Yes, the question mark, a single-character sign, possesses this power. Just like a math unary operator, it is a linguistic operator that empowers you with multiple abilities. And here they are:

Expanding knowledge by the means of asking a question. The brain has the habit of filling the gaps of ignorance using analytical skills, an association of concepts, and similarities. While it works more often than one thinks, it is inaccurate, even misleading sometimes. By gaining more awareness about this innate mechanism, we tend to cover gaps by following the foundational maxim, “If you don’t know, ask”. The Bible said it in another way “Ask, and thou shalt receive.”.

Assert or confirm a statement by seeking a true or false answer, increasing the force of your internal knowledge system. English has this nice reverse interrogation formulation where the auxiliary and the pronoun are inverted. For example: “The dog was cleaned, wasn’t it?” or “The Internet is the most powerful network, isn’t it?”. Another technique consists of using “be” as a tool for opening the field of possibilities for answers, meaning one can respond by confirming or infirming with a piece of complementary information. For example: “Was it Descartes who once said ‘I think, therefore I am’?”. Here, I tend to see the question mark as an invitation to conclude a contract of trust: my understanding is acknowledged; therefore, I trust your words. 

It forces action through suggestions. When one says “You are going to do it, aren’t you?”, you give that push that will trigger the intended cascade of events.

You can use a question mark to invite someone to do something or join you. For instance, “If you have time, would you like to have dinner tonight?”. This is a gentle way to request someone to do something of their own will.

It demonstrates your genuine interest in what someone is saying or thinking. For example, when someone asks a question during a debate, it constitutes a trigger indicating a need to be filled or a bond to be made. It is also an expression of interest in what she or he could say. In this regard, it is an invitation to participate in the idea exchange.

Did you know your questions are so valuable they have built business behemoths?

In 1997, Larry Page and Sergey Brin founded Google. Interestingly, the original name was “Googol,” but, due to a mistake, the company was registered as “Google.” A googol is a number with a hundred zeros.

Fast forward to today, and Google is the undisputed king of search engines, holding a 91% market share. There are 85 billion queries per month on Google in 2024.

Notably, the second most popular website is YouTube, which also relies on finding the right video based on your searches and attention. Google, YouTube, Instagram, Pinterest, X, and TikTok all share a common revenue source: advertising. Google popularized keyword bidding for ads: the more directly a keyword is associated with a common search, the more expensive it becomes. That’s how your questions acquire monetary value and become the fuel of social media super-algorithms.

Now that we are talking about money, it reminds me of the book “Rich Dad, Poor Dad” by Robert Kiyosaki. There is a striking example of how the question “How can I buy this house” instead of the affirmation “I cannot buy this house”, shifts the way your brain operates. Asking yourself the right question, rather than making an affirmation, triggers a thinking process that induces self-motivation. Facts are static until they get shaken; questions are the beginning of a story. They represent the spark.

While teaching my children how to use the Internet safely, I have rediscovered the most powerful effect of the question mark: the power to plant the seed of an idea with a drop of water, and the new beginning of the dark ages. It is the rise of click baits and misleading titles in online newspapers that makes me wonder “Why do people click?”, “Why do I want to click?”, “What is the true intention of this article? ». By turning an idea into a question, there is no assertion.  This is a state where neither the truth nor the lie is told but induced. You express your opinion in the most open way possible, and you activate the inner functions of the human psyche. A mind will naturally try to fill gaps whenever information is missing to either decide, lead one toward a goal, or fill a knowledge hole. This process is just an innate mechanism of the brain. You should know that a lot of content is now automatically generated by artificial intelligence, designed to exploit these psychological mechanisms for traffic and revenue or to trap users with malware, which is more harmful. The intent is to hack your mental system. One must be aware of this and should always ask the question « What is the true intent of the authors ». Then, what’s the difference between convincing and manipulating?

If you have yet to see the movie Inception by Christopher Nolan, I highly suggest watching it.

By asking a question, you can present your idea gently and say, « I may be wrong, and I am open to suggestions. Let me tell you what you think ». On the positive side, when the intent is pure, it is a form of expression that is polite and smooth. It reminds me of the precepts of “Nonviolent Communication” by Marshall Rosenberg. On the negative side, you can exploit people’s minds and practice the art of manipulation. 

Questions create cues, which are powerful mechanisms to awaken your mind and provoke a reminder to act or recall a memory. I have discovered that expert project managers use this technique, either willingly or subliminally, to prompt actions and increase the likelihood that the flow of work and cadence stays high among the various actors involved in the project. Sometimes, great achievements are born from seemingly insignificant pushes.

A well-architected set of questions creates a frame of thought. This frame acts as a guide, helping you to build reasoning. This reasoning leads to other questions and decisions. Ultimately, it creates an outcome that you can use, like a design, a plan, or an analysis, learned, or taught. This set is even more powerful than a task list, even though it requires more effort. I used this technique for building the AMASE Product and Service Architecture Canvas.

Beyond questions lies the dynamics of knowledge flows.

For those familiar with hermetic principles, you’ll recognize the profound power of questions. I view questions as channels of feminine energy – not in terms of gender or sex, but as conduits drawing information, knowledge, and wisdom from one place to another. This energy is then transformed into action, thoughts, decisions, or stored as knowledge.

Consequently, speaking the truth and sharing what you know (outside of storytelling contexts) is a principle one should adhere to. To do otherwise risks poisoning minds, as discussed earlier.

Interestingly, as a question receiver, you’re invited to answer or act: essentially, to give energy. Have you ever been in a job interview? That long series of interrogations is exhausting. With this in mind, you’ll understand why the pace and sequence of questioning, followed by active listening, enhances the quality of an interview or conversation.

To push this reflection further, I see wisdom as a higher state of energy that one can maintain effortlessly. Wisdom is a dense ball of useful energy – the accumulated and structured knowledge and know-how – from which one can tap and maximize benefits. The wise can passively nurture and grow this body of wisdom like a supernova. This is the path of the Sage.

TED Talk‘s motto is “Ideas worth spreading.” We’ve discussed how to uncover such ideas, but an equally important question is: how do we spread specific pieces of knowledge that are worth sharing?

Once again, questions are tools. I know an executive who employs this tool skillfully to align their staff and spotlight individuals who deserve recognition, especially in front of other executives. Questions spread easily like ideas because they open mental gates and reposition worldviews by offering new perspectives. The expression “Hmm, I never thought about that” often originates from a well-posed question!

The 2nd dimension of questioning

“I don’t want to be a didactic voice. I like to ask more questions than I answer, just to get people thinking and to make it safe to access art”

Hannah Gadsby

People use a secondary dimension as we speak to fuel the question marks’ superpower: the tone. The tone gives more depth, and more information, to communication.

A tone that ends with a high pitch will induce emptiness, which is to be filled with knowledge

A tone ending with a low pitch will induce completeness almost filled with willpower

It can be warm and calm so that your audience has fertile ground for inner reflection and trigger a deep-thinking process

Another way is to use a more seductive tone to induce something without saying it. Like the previous superpower, it is to be used with genuine intention because it makes people believe something. Therefore, it is better to be true; otherwise, you are just abusing someone’s dreams or weaknesses.

Finally, one can use a more threatening tone. The purpose of this is to express a « one last chance ». Your counterpart is put in the corner, and she or he will have to make a choice, for which the result may be costly if it is the wrong choice. As the former heavyweight boxing champion, Mike Tyson, said: « Everybody has a plan until he gets punched in the face ».

I realized that, like laughter, tone signifies the same meaning in most languages. Perhaps the truth lies here: sound imbued with emotion is the universal language, don’t you think?

To wrap up, the Art of Questioning can be synthesized into five key aspects:

  1. The art of quickly and clearly mapping the realms of the unknown and unclear, while making their boundaries tangible for everyone.
  2. The art of unearthing the truth.
  3. The art of carving an idea to absolute clarity.
  4. The art of guiding, influencing, and (unfortunately) manipulating.
  5. The art of mastering the flow of knowledge.

Can we consider questioning a science? I asked myself this and discovered there is, indeed, a field of research dedicated to ‘questioning,’ as well as a nascent discipline named ‘Questionology.’.

With that, I’ll leave you with one final piece of advice: With practice and curiosity, awareness leads to wisdom. Use the question mark’s power wisely.

🫡

Yannick HUCHARD

Categories
Artificial Intelligence Automation Business Business Strategy Engineering Innovation Robots Strategy Technology Technology Strategy

Update on Tesla’s Optimus #Robot – it is progressing fast

Tesla’s Optimus Robot learning from humans

The most impressive part is the technique employed by the Tesla team for accelerating the robot’s dexterity: the robot physically learns from human actions. 

Now, let’s step back and analyse Tesla’s master plan here:

(Putting on my business tech strategy goggles) 

1. Tesla builds electric cars augmented with software programmability.

2. Tesla provides an electric grid as a service.

3. Tesla builds gigafactories that maximize the automation of car manufacturing. Almost every single part of the pipeline is robotized and optimized for speed of production.

4. Tesla builds Powerwalls (by providing energy storage, it also creates a decentralized power station network).

5. Tesla brings autonomous driving (FSD) to Tesla cars. Essentially, cars are now transportation robots governed by the most advanced AI fleet management system.

6. Tesla builds its own chips (FSD Chip and Dojo Chip)

7. Tesla builds its own supercomputers.

8. Tesla launches Optimus, which aims to replace the human workforce in factories and warehouses.

9. X.ai, which has recently raised $6 billion, X’s supposedly “child” AI company, brings the Grok AI model trained on X/Twitter data. While you may say X data is not the best, X has a algorithm balanced with human judgment (community notes), AND the company regroups the largest set of news publishing companies. Basically, it automates curation and accuracy.

10. A version of the Grok AI model will likely power Optimus’s human-to-robot conversational interface.

11. Tesla cars will be turned into robotaxis, disrupting not only taxi companies but also Uber (the Uber/Tesla partnership may not be a coincidence), and eating into the shares of Lyft and BlaBlaCar.

12. Tesla will enter the general services business, and retail industries to offer multi-purpose usage robots – cleaning services for business offices, grocery stores, filling the workforce shortage in the catering (hotel-restaurant-bar…) industry, etc.

Tesla is not the only one moving in the “Robot Fleet Management” business. Chinese companies like BYD (EV) offer strong competition, and there are several robot startups (like Boston Dynamics and Agility Robotics) racing for the pole position.

#AI #artificialintelligence #Robotics #Optimus #EV #software #EnergyStorage #Automation #powerwall #AutonomousVehicles #FSD #chips #HighPerformanceComputing #Robots #GrokAI #NLP #robotaxis #innovation #WorkforceAutomation

Categories
web architecture Artificial Intelligence Automation Autonomous Agents Information Technology Services Technology User Experience UX

Navigating the Future with Generative AI: Part 3, Building the AInternet – AI, Web, and Customer Experience

A Revealing Experience

Allow me to share a personal experience that perfectly illustrates the challenges I will discuss. I was involved in a car accident where a vehicle coming from the opposite direction severely damaged the right side of my car. Following the procedure, I filed an accident report with the other party, although I found myself unable to provide my insurance number simply because I didn’t have it readily available at that moment.

In the meantime, I went to my regular dealership so that an appraisal could be carried out and the next steps for repair could be determined. I then contacted my leasing company, and one of their agents agreed with me and the dealer that I would drop off the vehicle within two weeks. A replacement vehicle would be provided, and the full repair would take one to two weeks.

However, due to my lack of foresight, I did not deem it necessary to contact them again initially. A few days later, I received a letter from them informing me of the accident – which was correct – but also stating that I had not submitted the accident report and that without it, their insurance reserved the right not to cover the damages. In fact, I had sent this document a week earlier, but to the wrong email address. Out of habit, I had used their general contact details, avoiding contacting the agent in charge of my leasing file – who had recently retired. As a precaution, I had even added the generic address, but clearly without success since the insurance department had not received it.

I then called them back urgently to obtain clarification. They confirmed that the accident report was missing, and the agent, with great understanding which I acknowledge, told me that I had to send it to another specific address because the insurance department had not been notified by their colleagues in charge of customer relations. Moreover, the latter was not authorized to provide me with a replacement vehicle until the repair shop had received their approval – even though it was the approved dealership where I had been carrying out all maintenance operations for years.

This kind employee then offered, as an exception, to handle my entire case without further difficulty since the drop-off of my vehicle was imminent, just a few days away. She knew also that my leasing contract was expiring and that I would have to return the vehicle in two weeks to obtain a new one.

While this situation caused me a little stress, it was only temporary. An hour later, the agent contacted me again to confirm that everything was settled: I could bring my vehicle the following Monday and a replacement vehicle would be provided for the duration of the repairs.

Lessons from This Experience

You may be wondering why I am sharing this story with you.

First of all, I was unaware of the procedures governing the reporting of an incident in the context of a leasing contract. Should I first contact my company, directly the historical leasing company, or the new one? When I called them, why didn’t I reach the dedicated claims and insurance department directly? Why didn’t I find any information about this on their website? Why, when everything seemed clear to me – that I would drop off my vehicle within two weeks, that a replacement vehicle would be waiting for me, and that the repairs would be handled smoothly – did things unfold differently due to a lack of following the proper procedure?

Beyond that, how can a single service company exhibit such a lack of communication between two complementary departments?

The Revolution of the “AInternet”


We are entering a new era where artificial intelligence will be at the heart of exchanges between human beings. Where everyone previously had to search for information themselves on the Internet, navigating from site to site and compiling data to find a company’s contact details, the instructions for a recipe, the contacts of a repairman, or browse the Yellow Pages, the new paradigm will rely on exchanges between humans, intermediated or not by an artificial intelligence capable of performing synchronous or asynchronous tasks, i.e. in the background, to provide immediate knowledge to the user rather than forcing them to seek it out.

And to return to my use case, the AInternet brings a revolutionized customer experience that unfolds as follows:

When I am involved in an incident, I ask my personal AI assistant to help me fill out the accident report digitally. I do not have to provide all the information since my assistant has a global context encompassing data related to my vehicle, its insurance, my contract, my identity card, my passport, my postal and telephone contact details, my insurer, the maintenance status of my car, its technical inspection certification, etc. All this information allows for automatic and complete filling of this type of interaction.

Next, I only need to ask my assistant to contact the assistants of my leasing company and my insurance company, to ensure that the report I have validated and electronically signed is transmitted and processed by these two parties.

The assistant of the leasing company then informs the agent that a replacement vehicle is required and that an approved garage must be contacted to book an appointment for the repairs. It also determines whether my car should be taken directly to the dealership in charge of its regular maintenance. The relevant agent then handles my vehicle accordingly.

The agent only has to ask their assistant for the contact details of my garage to reach out directly.

From there, a genuinely empathic human relationship is established as we build a frictionless mutual understanding of the situation. Following the garage’s preliminary appraisal report, the leasing agent and the garage are prepared to agree on an appointment date, which is then recorded in the various systems.

The garage proceeds in an automated manner with the reservations and orders for the spare parts necessary for the repairs.

Simultaneously, the leasing company manages with the insurance company all the steps required to allow for the vehicle reparation and the provision of a replacement vehicle during the downtime.

Finally, the agent contacts me personally, by phone or message on a platform such as WhatsApp, to confirm everything is in order:

The incident has been properly recorded and the insurance company will cover all costs. An appointment has been set with my garage. A replacement vehicle will be provided during this period. An estimated date for returning the repaired vehicle has been communicated. They wish me an excellent day with a smile, since their assistant and mine have handled the entire procedure seamlessly. This augmented interaction allows us to reach new heights of fluidity and ubiquity in exchanges.

I am optimistic, indeed. Why wouldn’t I be? The transformation is already in motion.

The Internet will no longer be confined to a vast catalog of information to consult, such as books, encyclopedias, or applications, where interactions must be initiated and orchestrated by us, humans. But the orchestration between an individual and an organization, between two individuals, or between an organization and a computer system, will be performed like a symphony by intelligent agents, artificial intelligences.

This demonstrates an evolution of the World Wide Web architecture, which will constitute a veritable system of systems composed of human beings, applications, automata, and artificial agents.

The challenge from now on to enable this progression towards the era of digital augmentation will be to build artificial intelligence at the heart of human interactions. It is a matter of UX innovation.

It will no longer be a question of programming these interactions in advance by limiting the possibilities, but rather of training these artificial intelligences to handle a wide range of possible scenarios while framing and securing the use cases that could result from malicious computer hacking.

Ensuring a secure web environment requires a multi-layered approach that goes beyond safeguarding the AI models themselves. Equal vigilance must be applied at the integration points, where we erect robust firewalls and implement stringent access controls. These protective measures aim to prevent artificial intelligence from inadvertently or maliciously gaining entry to sensitive resources or confidential information that could compromise the safety and well-being of individuals, imperil organizations, or even threaten the integrity of the entire system.

Thus, emerging risks, such as jailbreaking, aimed at deceiving an artificial intelligence devoid of physical senses such as sight, hearing, and spatial awareness, allowing the authentication of a person, a company, or a system, will have to be compensated by other supervision and protection mechanisms.

It is on this note that this article concludes. We are living in an era of transition rich in exciting developments, and it will be up to you to build the Internet of tomorrow: the Augmented Internet.

🖖

Categories
Strategy Architecture Artificial Intelligence Blockchain Business Business Strategy Enterprise Architecture Organization Architecture Technology Technology Strategy

Architecting the Future: How RePEL Counters VUCA for Modern Enterprises

I was first introduced to the term VUCA by my ex-colleague, Julian TROIAN, a leader in coaching who steers the talent management practice. This revelation came during a particularly challenging phase for us, mirroring the struggles of many other companies. We found ourselves navigating the intricacies of the COVID lockdown while simultaneously undergoing a significant shift in the corporate way of working. Our project portfolio was expanding, driven by the rapid pace of transformations, and we felt the weight of increasing regulatory pressures. But we recognized that these challenges were not ours alone. Then, significant disturbances emerged: the Eastern Europe conflict and a surge in inflation, to name a few.

Moreover, the world stood on the brink of simultaneous technological revolutions. Innovations like blockchain and the nascent promise of the metaverse hinted at new horizons. Yet, it was the seismic shifts brought on by Generative Artificial Intelligence that seemed most profound.

VUCA is an acronym encapsulating the themes of vulnerability, uncertainty, complexity, and ambiguity. Herbert Barber coined the term in 1992 based on the book “Leaders: The Strategies for Taking Charge”. I believe many can relate to these elements, sensing their presence in both professional settings—perhaps during office hours—and in personal moments with family.

Life, in its essence, might be described by this very term. We all traverse peaks and lows, facing situations of heightened complexity or vulnerability. The challenge is not just to navigate these periods but to foster strength and ingenuity, arming ourselves for future obstacles.

I consider myself fortunate to have garnered knowledge in enterprise architecture—a domain that inherently equips any organization, product, or service with resilience, making adaptability part of its very DNA.

In the subsequent sections, I explore strategies for developing VUCA antibodies.

From Vulnerability to Resilience: Building an Unshakable Future

Rather than getting bogged down by vulnerabilities, it’s about harnessing resilience. Robustness is the key to building thick layers of protection, ensuring longevity in our ventures. By deliberately creating anti-fragile mechanisms, we’re better prepared for tough times. This resilience doesn’t just happen; it’s constructed. Architects weave it into their designs across various realms:

  • Information Systems: These are designed to be failure resistant. Potential mistakes and erratic behaviors are predicted and integrated into the system as possible anomalies. In such events, responsible teams must give clear procedures to users, operators, and administrators to restore the system to its standard operational mode.
  • Data Management: From acquisition and processing to analytics and visualization, there’s complete control over the data flowing into the system. This range from a service request made over the phone, a command initiated by an AI, or even a tweet that prompts the system to respond.
  • Security: Safeguarding the system against potential hacks is crucial. Additionally, it’s vital to design the system in a way that vulnerabilities don’t open doors for intrusions. Depending on the chosen architectural delivery method, this can be addressed proactively or reactively.
  • Infrastructure: The foundational physical infrastructure, tailored to the system’s needs, must be aptly dimensioned. At times, specialized hardware like GPU-driven servers, or programmable network devices might be essential to cater to particular needs during both the development and operational phases.
  • Organization: People, integral to the corporate ecosystem, influence the system’s effectiveness. Their actions and behaviors enhance system efficiency, especially when elements like trust, making amends for failures, regular maintenance, and adaptability to change are activated.

All these aspects aren’t mere byproducts; they’re deliberately designed system features.

From Uncertainty to Probable Planning: Navigating with Confidence Through Uncertain Waters

Predicting the future is beyond anyone’s capability, but architects can narrow down scenarios to the most probable outcomes. Through modeling techniques like system design, trend analysis, scenario planning, and causal loops, they can forecast with a higher degree of accuracy. However, the planning phase isn’t without challenges:

  • Resources: There are times when constraints in time, finances, skills, and materials can make a proposed solution unfeasible. Recognizing this early on is vital.
  • Leadership: A wavering decision-maker, filled with doubt, can be a significant impediment. This is a leadership challenge that needs addressing at the top. In such a situation, the architect must highlight the unstable matter with benevolence and candor.
  • Team: The implementation is only as good as the team behind it. If team members don’t possess the necessary skills or their abilities don’t align with the mission’s complexity, especially when executing multiple plans simultaneously, it will compromise the execution of the plan.
  • Expertise: last but not least, the architect’s seniority and the time allocated to address your transformation’s VUCA elements also play a critical role.

From Complexity to Engineering: A Blueprint for Simplification

Sometimes, complexity arises from perception, misunderstanding, or underestimating a situation – often, it’s a mix of these elements.

Imagine you have three wooden chairs, and you wish to create a sofa. Is it even possible? Fortunately, Ikea offers a DIY toolbox that can help you realize this vision. When you describe your idea to the store specialist, she confidently directs you to aisles A8 to C12 for the necessary components. At first, you feel relief. But soon, doubts about your abilities confront you. Even with your experience in crafting wooden furniture, you’re unsure about the mechanisms you’ll need, the type of finish to choose, the tools required for precise cuts, and the best materials for durability. Are these materials environmentally friendly? This confusion and uncertainty are akin to experiencing VUCA.

The architect’s role is to first understand the complexity, determine the facts, and uncover what’s unknown, converting it to known information. Then, the challenge or problem is segmented into manageable pieces. I refer to this process as “Undesign.” The goal of undesigning is to get a clear and detailed view of the end goal by atomizing the current state, structure, and behavior. This is achieved through methods like decomposition, deconstruction, alternate system modeling, and sometimes reverse engineering. Subsequently, the architect uncovers a path to transform and assemble these components.

The essence of engineering is to assemble these components using identifiable, simple building blocks. These blocks are selected, modified, added, and connected in a logical order, ensuring the right materials, technologies, and tools are used. People with the right skills can then efficiently bring the project to life, ensuring it’s as seamless and enjoyable as possible. Even the user’s psychological experience matters!

In summary, what seems intricate and complex can be distilled into simpler, manageable parts.

From Ambiguity to Lucidity: Transitioning from Wishful Thinking to Tangible Outcomes

Architects don’t just exist in the present; they shape the future. Their responsibilities lie in meticulously designing and planning changes that will inevitably impact an organization’s products or services. Any vision, no matter how abstract, becomes initially tangible through their work. They ensure this by providing explicit construction instructions, detailed models of the final product, and ensuring the requisite resources and skills are in place. By doing so, architects play a pivotal role in turning ambiguity into precision.

Moreover, it’s the architect’s responsibility to align ambitions with the resources available, ensuring that goals are realistically achievable.

In wrapping up, VUCA can be perceived as a daunting challenge. But, with the right leaders onboard, RePEL becomes a natural response to unfriendly environments and stressful times. They hold the key to transforming volatile situations into clear, well-defined future pathways, keeping the enterprise entropy under control.

Categories
Technology Artificial Intelligence Business ChatGPT Data Design GPT3 Information Technology

Navigating the Future with Generative AI: A Prompt Engineer Job Offer?

Looking through the lens of Generative AI, jobs are evolving rapidly in this age of Digital Augmentation. In the midst of all the artificial intelligence effervescence, I wonder what kind of new jobs will emerge soon.

One of them is the Prompt Engineer.

In this article, I imagined the job description of your business’ first Prompt Engineer.


YH SuperSleek Jeans fashion brand logo 01 1

The world is shifting rapidly. As a pioneer in generative AI and an advocate of productivity augmentation, we are excited to open the position of Prompt Engineer.

SuperSleek Jeans is a company providing tailored jeans to women and men. Our purpose is to make jeans like a second skin! Our values are sensorial audacity and durability leadership. We proudly employ 2700 talented souls dedicated to meeting people’s needs in a smart and compassionate manner. Technology plays a significant role in our way of working and exploring uncharted territories for the benefit of our employees and customers is part of our DNA.

We foster a dynamic and inclusive company culture that encourages growth, collaboration, and innovation. We offer competitive compensation packages, comprehensive benefits, and numerous opportunities for professional development.

Your Mission

Your mission is to establish and grow the practice of Prompt Engineering at SuperSleek Jeans.

Responsibilities

  1. Learn and teach how to build products faster by analyzing and modifying the chain of analysis-to-design, design-to-build, and build-to-supervise for augmentation in each domain.
  2. Lead the development of an Enterprise AI Spirit, a chat-based agent, sourcing its knowledge base from existing systems such as Wiki, Document Store, Databases, and Unstructured documents. Manage an up-to-date training data set.
  3. Build a corporate prompt catalog for workers to provide reusable productivity recipes.
  4. Determine which parts of business processes can be entirely automated.
  5. Establish KPIs, a Steering Dashboard, and periodic reporting to measure the benefits of AI-augmented engineering and operations compared to current systems of work.
  6. Introduce and evangelize the concept of Generative AI and Large Language Models (also known as LLM).
  7. Build a legal and ethical framework to ensure risks pertaining to AI augmentation are addressed accordingly. Monitor the progress of domestic and international AI regulations.

Your Skills

  1. Hands-on experience with Generative AI models and tools leveraging prompt engineering, such as ChatGPT, Midjourney, ElevenLabs, etc.
  2. Core background in IT engineering.
  3. Proven algorithmic skills and mastery of engineering practices.
  4. The ability to code in one of the most popular languages such as Python, JavaScript, Java, or C#. A basic understanding of SQL is a must.
  5. Data management proficiency.
  6. Excellent communication and ability to design stunning presentations with compelling storytelling.
  7. Critical thinking and root cause analysis capabilities.
  8. Conversational UX proficiency.

Soft Skills

  1. Autonomous leadership with the ability to identify and propose the next best actions for yourself and your colleagues.
  2. Effective change management and resistance handling.
  3. Leading by example and providing assistance to colleagues when needed.
  4. You walk the talk by advocating continuous augmentation and demonstrating how your productivity and quality increase with AI augmentation.

Benefits and Perks

  1. An 85k€ to 105k€ compensation package based on your experience in engineering and AI knowledge.
  2. Total health, dental, and vision insurance for all family members.
  3. Retirement savings plan according to the national compensation scheme.
  4. 30 holidays with a generous paid time off policy.
  5. Employee assistance program and wellness initiatives.
  6. Craft your own professional growth and development along with your manager
  7. Collaborative and inclusive company culture.
  8. Free cinema tickets for your team once per quarter.

Living Your First Days in our Company

  1. You start your onboarding as a treasure hunt which consists in visiting key people, visiting unusual places, and learning our way of working. Each step unlocks a new quest until the completion of your journey. Your manager, the employee experience manager officer, and teammates assist along your adventure.
  2. Receive training so that you can rapidly feel comfortable with internal tools.
  3. Enjoy a tour of the premises and surrounding environment, such as restaurants, shops, parks, etc.
  4. As you familiarize yourself with the work environment, your first responsibility will be establishing a plan for transitioning our organization from Digital Transformation to Digital Augmentation.

Join and become part of a team that shapes the future of SuperSleek Jeans. Apply now and embark on an exciting and fulfilling career journey with us.


Feel free to unapologetically copy and remix this potential job offer in your business transition to Digital Augmentation.

I might even use it in the future. Who knows!

🖖

Categories
Technology Banking Business Cryptocurrencies Finance

The Negative Impact of Bank of Startups’ collapse

The recent bankruptcy of Silicon Valley Bank (SVB), a major financial institution has sent shockwaves throughout the startup world, particularly for those in the ESG (Environmental, Social, Governance) and blockchain/cryptocurrency sectors. The impact of this bankruptcy could have far-reaching consequences, affecting not only startups but also venture capitalists and pension funds.

One of the major risks associated with this bankruptcy is the domino effect it could have on venture capitalists and pension funds. For example, Vanguard Group has 11.2% of its holdings in SVB, which has a significant stake in the ESG and blockchain/cryptocurrency industries. If SVB were to suffer from bankruptcy, it could have a ripple effect on investment firms, followed by a temporary loss of trust in the market.

Furthermore, its collapse could erode investor confidence in smaller regional banks and drive investment toward larger, “safer” banks. This shift in investor sentiment could make it more difficult for startups to secure funding and could hinder the growth of ESG innovations and DeFi initiatives.

It’s important to note that investors with significant influence in the markets, such as Peter Thiel (co-founder of PayPal), can have a major impact on market psychology. Whether right or wrong, their opinions can sway investor sentiment and potentially exacerbate the negative effects of downfall.

In light of these developments, startups should be vigilant and prepare for potential challenges in securing funding. Investors should also carefully consider the risks associated with investing in these industries and the potential impact of external factors such as bankruptcy cascade. Overall, the effects of this financial earthquake serve as a reminder of the interconnectedness of the financial world and the importance of being mindful of potential risks and challenges.

Categories
Technology Blockchain Business In 2060 Information Technology Society Text-to-Speech

Cloud Computing in 2060

I was busy with professor Gytek when a high-priority notification arrived, so I ask my AI family assistant for a voice reading.

“Good morning Yannick, you’ve spent 1704 CU this semester. The consumption is unusually high by 27% compared to the previous period.”.

I guess it is because my grandchildren are living with us since ‘that’ incident. And my work with professor Gytek is certainly for something. Sometimes I feel I turned like my old folks, thinking my civilian bills is a high priority!

It feels like ages ago when, in 2034, Europe voted for the General Digital Access Regulation or GDAR. The GDAR has invited country members to the standardization of digital facility services for all European citizens. The implications were multiple with some bonuses. It became mandatory to provide access to the Internet to residents. Therefore, at least a device was to be given for truly digital equality and sustainable civilization development. Hence all citizens could study, work, buy, and vote online free of “access fees”.

Today, each and everyone is connected, could it be brain-wired, phygital reality glasses, in-bone sensorial devices, you name it. Not that it is necessary, holographic coating comes by default now. Wall paints, object textures, and glasses contain diamond-shaped optical picobots that give the illusion of depth without wearing anything. Actually, holographic surrealism is the latest design trend! Consequently, it has created an outstanding dependency on Decentralized Cloud Computing and Centralized Cloud Computing Networks.

The first sign of significant transformation was post-COVID-19, which revealed the need for remote work.

The intense need started really in 2032 when governments realized they could not be relying only upon Google, Amazon, and Microsoft for the future of digital expansion. The main reason is that GDAR states the following foundation principle:

Article 3.
Pursuant to legal principles of ownership and privacy, it is hereby declared that all data, computing resources, and services shall be considered the personal property of the individual to whom they belong. Any access to or utilization of said property by any third party must be fully authorized by the owner and must be recorded in the EU Secure Non-Repudiable Ledger for the purposes of personal auditing and consumer accountability. Any unauthorized access or use of such property shall be deemed a violation of the owner’s rights, and may subject the offending party to legal action.

The negotiation with US and Chinese companies demonstrated the frail adherence to these requirements. Sometimes there were even reluctant to do so, which, considering the balance of the tripolar world order, was already quite an achievement. In parallel, to ensure national intelligence security, and intellectual property preservation, the only option left was to rely on a European Cloud.

This is when GAIA-X also became a so-called superunicorn company, switching from a federated cloud project to a single organization of a new kind: a European company, managed like a private company, with an obligation of result, but publicly owned by all state members, and, that’s a first, explicitly owned by the people. As a result, GAIA-X became ATHENA, and Octave Klaba, the founder of OVH Cloud, its CEO. What made it truly unique was the redistribution of benefits to the population; Indirectly, of course, but still, the business model was innovative, sustainable, and fair to citizens. The only thing you need to get started is your wallet!

During the same period, a new kind of Trade Exchange has been created: the EU Sovereign Trade Exchange, where only state citizens could buy and sell ATHENA’s shares and Computing Units tokens (CU). The latter serves as the foundation for receiving your free volume of TPU to satisfy your basic need as an individual and to extend the growth of enterprises based on how citizen wishes to invest in their business expansion.

In 2060 Cloud Computing in 2060 PolyLight technology

The real benefit and the paradigm shift, at least for me, was computing becoming a utility resource like electricity and water. It changed everything:

First, Cloud Providers became producers of CUs. Considering international diplomacy with New Americas, BRICS, and the Great African Union, the leading cloud providers such as Microsoft Azure, Amazon Web Service, Google Cloud Platform, Netflix Entertainment Cloud, Alibaba Cloud, Africa Data Centres, and DFnity were considered first-class cloud producers in the European Union.

Secondly, individuals can be CU providers when they have devices and servers producing more computing units than they consume. Nowadays, Cloudfluencers are the real deal!

Thirdly, all dwellings, devices appliances, were by default connected to your dHome Network, which is your dedicated network for privacy compliance. In 2034, the first GDAR amendment was issued in Luxembourg, where it forced all new construction and existing construction to incorporate a pluggable dHome network. Thus, the civil architecture standards and IT digital standards were upgraded and propagated throughout Europe. As a consequence, private-to-public Internet gateways were included in all housing plans by design.

Fourthly, connection to the Internet is also included. The network is software-generated and the adaptive routing is part of the civil infrastructure coming by Satellite’s PolyLight technology (which is the advanced distribution network using directed polyphasic beams of light, and each “column building” is a piece of architectural art), distributed electric grid network, where each device and vehicle act as a distribution node, or air using the old school 10G network used by the purists and the developers. Underground internet distribution is forbidden nowadays. You only had to select your Cloud Computing Providers for additional services, like on-demand Entertainment Services, the same way you used to subscribe to Netflix!

Finally, you had a single billing system where your utility invoices were sent directly to your EU Citizen One Stop Shop portal, the dHome, while payments were performed automatically (see Banking in 2060)

In 2060 Cloud Computing in 2060 futuristic polyhedron datacentre high in the sky

The security of ATHENA’s distributed network was the best.

The Core Network, BREW, was virtually inaccessible. The reason was simple, it was located in space. Its data center was a giant polyhedron, entirely built by machine. It is not that, nowadays, we do not trust humans, it is just that people trust the public and the unbias aspect of machine-generated code.

The most impressive was the servicing of qCPU. Each of them is unique, embedding in its core a set of private metamorphic keys only known and bound to the citizen. Then, the qCPU is printed on demand inside BREW autonomous factory. Furthermore, the qCPU is destroyed, recycled, then replaced periodically to ensure maximum security. Finally, human interventions, if any, are performed remotely, from ATHENA Earth Control Center, using a repair drone, which was shipped from the daily Falcon Cargo Shuttle.

“Where was I again… Ah, yes. Professor Gytek, we need to work out what is happening to you. This cannot happen again…”


Categories
Technology Business Career Information Technology IT Architecture Self development

What roles exist in IT for software developers to pursue after they are tired of coding?

There are many job careers to “step up” or “side step” from IT Dev Engineer. The following introduces 14 jobs to which you can start planning your next career move.

Technology Consulting

Join an ICT consulting company to provide technology consulting. The goal is to specialize in a dedicated technology or focus your attention on a specific technology stack. You are selling your expertise, methods, and best practices.

Thus, your activities will mainly be: installation, configuration, integration, performance tuning, security hardening, and guidance. For example, ELK Stack specialist, Neo4J expert, Microsoft Azure Cloud champion, etc.

Project Manager

Your expertise will be mainly focused on planning, coordination, communication, and budget management. Your experience in IT will also help you to identify pitfalls and manage delivery and expectations. You could also be specialized in Agile Delivery and get a Scrum Master certification.

In addition, you will develop financial acumen. Keeping spending in check is an important part of project management. Decisions, such as hiring contractors, conducting RFP, and cloud service consumption optimization, have an impact on the overall project investment.

Business Analyst

You will focus on your functional expertise in the frame of an industry vertical, such as Banking, Healthcare, or Food services, to provide an in-depth analysis of functional and non-functional requirements.

Then, leverage your IT experience to increase the feasibility of the solutions.

Your knowledge spreads over the spectrum of:

  • Contribute to project activities
  • Acquiring the voice of customers
  • Provide thought insights on product feature prioritization
  • Discover new business trends
  • Provide expert-level internal support and customer support.

Architect

You have a different flavor of architect roles here. To name a few, Software Architects, Infrastructure Architects, or Solution architects will move into the realm of architectural design and increase the scope of your actions and the weight of your decisions.

The end goal is to continuously deliver high-level plans and detailed plans that have been worked out with product managers, business analysts, IT engineers, etc. so that product implementations fit completely to expectations given the resources and constraints.

Ops Engineer

As a side step, you can focus on other IT jobs such as Ops Engineer, or specialized System Administrators (Sys Admin), where you will focus more on platform automation, reliability, and observability. There is more configuration, administration, forensics, and less coding.

But you will still code. Shell (Bash, Powershell, etc.) and scripting will be your best friends!

You will abide by the good practices of Site Reliability Engineering (SRE) and ITIL governance, most specifically within Change Management, Incident Management, and Problem Management.

Test Engineer

If your mind is more driven by probing things and ultimately driven by quality, this job is for you.

Test engineers focus on elements that are not in line with requirements and the expected “correct” behavior. In addition, they will bend the product until it breaks.

It is all about detecting as early as possible the elements that will go against the fulfillment of the functionality, or hamper the user’s experience. It is a continuous practice as each change has the potential of breaking working features.

They are highly useful advisors as they guide you in the right choice, and the valuable tradeoffs, as IT delivery is often about the decisions between quality, timing, and costs.

Security Engineer

It takes another way of thinking, almost reversing the IT developers’ mindset. As a security engineer, you work in the realm of “what if” and “be ready when”.

It is about playing defensive, thinking in terms of security zones, trust limits, sometime in trustless systems (Zero Trust Architecture), and managing identity and access rights.

The ultimate purpose is to erect an unshakable foundation because a crack in your fortress will be undoubtedly disastrous.

Like Tower Defense games, it is a fun job, and Cybersecurity jobs are in high demand.

UX Designer

If you are sensitive to ergonomics, aesthetics, and customer behavior, and you are already acquainted with frontend development, a jump to UX design, and regularly extended to UX/UI design.

UX, as User Experience, focuses on the events leading to the experience, the beginning of the experience, the path the user walks, and the end of the journey.

UX designers will focus on making the moment “enjoyable”, “frictionless”, and sometimes, “memorable”. Hence, the user’s feelings will be considered a critical piece of data during the design exercise.

Alternatively, the UI (User Interface) Design concentrates on the aesthetics, the action of polishing, turning something common into a unique piece that links to brand identity. Masters in this area are considered digital artists.

IT Manager

Then, if you feel the need to lead, coach, mentor, organize, and decide about the next step: walk the path of the IT Manager.

First and foremost, understand that it is primarily about the people as your job continuously focuses on ensuring your colleagues are in the optimal state for fulfilling their job in the most enjoyable way possible, moving away obstacles, and sources of confusion or disorganization.

Start with learning how to manage a team, a small one (1 to 3) to start with. It takes a different kind of skill set for managing people. It is not because you are a sound engineer that you will be a good people management.

Finally, management truly shines when you learn how to be a leader, and even more when you teach leadership.

Data Management Expert

In this case, it is all about the data. Designing Data models, managing existing data (consistency, integrity, etc), releasing new schema, improving query performances, patching data, performing data migrations, managing reference data, etc.

You will perform a lot of data analysis and forensics. Mastery of the meaning will be key and you are highly valuable to your company / to the industry for these skills.

Data Scientist

Your sole purpose is to find gold in your data, hence your job is to be a researcher using advanced tools such as statistics, graph visualizations, machine learning, deep learning, etc.

This job is perfect for explorers and pioneers. You will navigate the sea of data (Data warehouses, Data Lake, Data Mart, etc.) often to seek an answer to a question, or in pursuit of pieces of information unseen before.

You will find correlations, clean the data, aggregate them, practice feature engineering, create models, and, to some extent, reuse or create new A.I. architecture.

The point is that you must be good with data and maths, especially statistics. There is much less coding, yet most libraries such as Pytorch, Tensorflow, and Brain.js are built upon Python, JavaScript, and R. Coding is more of a tool in this case.

IT Risk Engineer

This discipline consists in transforming the organization by incorporating risk elements inherent to bad practice and non-compliance to industry standards (HIPAA, ISO 9001, BIAN, …), regulated framework (GDPR, NIS, …), practice standards (ITIL, COBIT, …), and corporate standards.

As an IT Risk engineer, your activities are:

  • Designing and enriching the risk management methodology
  • Running day-to-day operations, controls, and governance to ensure the enterprise stays in adequation with compliance.
  • Coding IT programs that guarantee automatic compliance by design.
  • Actively mentoring other colleagues in developing risk awareness

Typically, IT risk elements are subject to compliance checks run in the scope of audits.

IT Auditor

IT Auditors are the ones verifying compliance with standards and regulations. You can work as an internal auditor or an external (independent) auditor.

You will work within a control framework and an IT auditing methodology to highlight compliance findings and gaps with respect to a standard or a regulation.

For the latter, you will likely represent a body of regulation or a body of certification. Either way, you will more often find a job in the top tiers consulting firms, such as EY, BCG, Infosys, Cap Gemini, or large companies that are either mandated by the regulator to have an internal audit organization, such as in Banking.

Technical Writer

Technical writers are experts in writing professional documentation. Your purpose is to engineer documentation in such a way that it will holistically be understood by a specific audience, could it be an end user, an administrator, or a developer.

You structure your documentation so that its information architecture is easily grasped by the reader. In addition, the progression is engineered in such a way that the reader will learn throughout its journey what concepts mean, how they are related to each other, and how to repeat tasks to become autonomous.

A technical writer deeply understands that documentation is part of “the product definition”, therefore it must be polished, finished, visually designed, and user-focused.

Typically, the best documentation promoted by the best ICT companies is written by these experts. They work with Content Management Systems, proof-writing systems, templates, reader-friendly fonts, and rich illustrations, within the consistency of a design system created by a UX/UI Designer.

🫡